Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Common Feature

Next, the power and the benefits of reaction center or reaction sub.structurc searching (see Section 3.3) will be illustrated. Figure 10.3-26 shows some of the hits obtained in a search for reactions that form a C-C bond. Intentionally, only the names of the starting materials and products of these reactions are given in order to emphasize that the common feature of these reactions cannot be derived from coding chemical compounds by name. Only a search by reaction center can expose the similarity in these reactions. The next logical steps would then be to explore whether these reactions have more in common than just forming a C-C bond. [Pg.566]

Water ammonia and methane share the common feature of an approximately tetra hedral arrangement of four electron pairs Because we describe the shape of a molecule according to the positions of its atoms rather than the disposition of its electron pairs however water is said to be bent and ammonia is trigonal pyramidal... [Pg.29]

Methane ethane and cyclobutane share the common feature that each one can give only a single monochloro derivative All the hydrogens of cyclobutane for example are equivalent and substitution of any one gives the same product as substitution of any other Chlorination of alkanes m which the hydrogens are not all equivalent is more com plicated m that a mixture of every possible monochloro derivative is formed as the chlo rmation of butane illustrates... [Pg.175]

This chapter differs from preceding ones in that it deals with several related classes of compounds rather than just one Although the compounds may encompass sev eral functional group types they share the common feature of yielding carboxylic acids on hydrolysis and for this reason are called carboxylic acid derivatives... [Pg.830]

Biphenyl has been produced commercially in the United States since 1926, mainly by The Dow Chemical Co., Monsanto Co., and Sun Oil Co. Currently, Dow, Monsanto, and Koch Chemical Co. are the principal biphenyl producers, with lesser amounts coming from Sybron Corp. and Chemol, Inc. With the exception of Monsanto, the above suppHers recover biphenyl from high boiler fractions that accompany the hydrodealkylation of toluene [108-88-3] to benzene (6). Hydrodealkylation of alkylbenzenes, usually toluene, C Hg, is an important source of benzene, C H, in the United States. Numerous hydrodealkylation (HDA) processes have been developed. Most have the common feature that toluene or other alkylbenzene plus hydrogen is passed under pressure through a tubular reactor at high temperature (34). Methane and benzene are the principal products formed. Dealkylation conditions are sufficiently severe to cause some dehydrocondensation of benzene and toluene molecules. [Pg.116]

The common feature of these materials was that all contained a high proportion of acrylonitrile or methacrylonitrile. The Vistron product, Barex 210, for example was said to be produced by radical graft copolymerisation of 73-77 parts acrylonitrile and 23-27 parts by weight of methyl acrylate in the presence of a 8-10 parts of a butadiene-acrylonitrile rubber (Nitrile rubber). The Du Pont product NR-16 was prepared by graft polymerisation of styrene and acrylonitrile in the presence of styrene-butadiene copolymer. The Monsanto polymer Lopac was a copolymer of 28-34 parts styrene and 66-72 parts of a second monomer variously reported as acrylonitrile and methacrylonitrile. This polymer contained no rubbery component. [Pg.416]

The common feature of the p-phenylene group stiffens the polymer backbone so that the polymers have higher TgS than similar polymers which lack the aromatic group. As a consequence the aromatic polymers tend to have high heat deformation temperatures, are rigid at room temperature and frequently require high processing temperatures. [Pg.584]

The polymers considered in this chapter have the common feature of possessing in-chain rings which give them higher TgS than their aliphatic counterparts and even their ortho- and /weto-analogues. In themselves they divide into three groups ... [Pg.611]

We have covered a body of material in this chapter that deals with movement of mass along gradients and between phases. We have examined the commonalities and differences between linear driving forces, net rates of adsorption, and permeation. Each has the common feature that reaction is not involved but does involve transport between apparently well-defined regions. We move now to chemically reactive systems in anticipation of eventually analyzing problems that involve mass transfer and reaction. [Pg.296]

The study of the behavior of reactions involving a single species has attracted theoretical interest. In fact, the models are quite simple and often exhibit IPT. In contrast to standard reversible transitions, IPTs are also observed in one-dimensional systems. The study of models in ID is very attractive because, in some cases, one can obtain exact analytical results [100-104]. There are many single-component nonequilibrium stochastic lattice reaction processes of interacting particle systems [100,101]. The common feature of these stochastic models is that particles are created autocatalytically and annihilated spontaneously (eventually particle diffusion is also considered). Furthermore, since there is no spontaneous creation of particles, the zero-particle... [Pg.427]

But a computer simulation is more than a few clever data structures. We need algorithms to manipulate our system. In some way, we have to invent ways to let the big computer in our hands do things with the model that is useful for our needs. There are a number of ways for such a time evolution of the system the most prominent is the Monte Carlo procedure that follows an appropriate random path through configuration space in order to investigate equilibrium properties. Then there is molecular dynamics, which follows classical mechanical trajectories. There is a variety of dissipative dynamical methods, such as Brownian dynamics. All these techniques operate on the fundamental degrees of freedom of what we define to be our model. This is the common feature of computer simulations as opposed to other numerical approaches. [Pg.749]

These include identification of process equipment and instruments, interpretation of the meaning of their values and trends, navigation through different VDU pages by means of a selection menu, etc. The common feature of these tasks is handling the display system to search and locate relevant process data. In this respect, "classical" ergonomics checklists (see Chapter 4) are very useful in facilitating performance of such tasks. [Pg.328]

The most important aspect of Table 27.1 is that the 20 anino acids that occur in proteins share the common feature of being a-anino acids, and the differences fflnong them are in their side chains. Peptide bonds linking carboxyl and a-anino groups characterize the structure of proteins, but it is the side chains that are mainly responsible for theh properties. The side chains of the 20 commonly occuning amino acids encompass both large and small differences. The major differences between amino acid side chains concern ... [Pg.1110]

A detailed description of methods for studying dynamic (i.e. time-dependent) phenomena and condensed phases is outside the scope of this book. The common feature for all these methods, however, is the need for an energy surface upon which the dynamics can take place. The generation of such a surface normally relies at least partly on results from calculations of the types discussed in Chapters 2-6, and it may therefore be of interest to briefly discuss the fundamentals. [Pg.372]

This method represents the most common and traditional application of computational tools to rational drug design. From a list of molecules of known activity, one can establish a 3D-pharmacophore hypothesis that is then transformed into a 3D-search query. This query is then used to search a 3D database for structures that fit the hypothesis within a certain tolerance. If the yield of active molecules is significant, then the query can be used to predict activities on novel compounds. In our situation, the enantiophore is built from the superposition of a list of sample molecules, which are all well separated on a given CSR Hence, the common features of this series of molecules can become a good enantiophore hypothesis for the enantiores-olution on this CSR... [Pg.110]

We shall now discuss the common features and the differences between the hexagonal phases in Cases 1-6. [Pg.301]

The thermal strain measurements described above have the common feature of anisotropic behaviour in a supposed isotropic state (cubic structure). These observations go well beyond the short-range, static strain fields associated with the lattice impurities responsible for Huang scattering. This then raises the question of the temperature at which the lattice symmetry changes and the implications of this for the central mode scattering. [Pg.337]

The aforementioned inconsistencies between the paralinear model and actual observations point to the possibility that there is a different mechanism altogether. The common feature of these metals, and their distinction from cerium, is their facility for dissolving oxygen. The relationship between this process and an oxidation rate which changes from parabolic to a linear value was first established by Wallwork and Jenkins from work on the oxidation of titanium. These authors were able to determine the oxygen distribution in the metal phase by microhardness traverses across metallographic sections comparison of the results with the oxidation kinetics showed that the rate became linear when the metal surface reached oxygen... [Pg.284]

Unlike the epoxy resins where the members differ only in their size, the isocyanate resins differ markedly according to the choice of components, but all have the common feature of a diisocyanate as one of the components. Two of the most widely used diisocyanates are tolylene diisocyanate and hexamethylene diisocyanate which have the following structures ... [Pg.680]

Second generation COMT inhibitors were developed by three laboratories in the late 1980s. Apart from CGP 28014, nitrocatechol is the key structure of the majority of these molecules (Fig. 3). The current COMT inhibitors can be classified as follows (i) mainly peripherally acting nitrocatechol-type compounds (entacapone, nitecapone, BIA 3-202), (ii) broad-spectrum nitrocatechols having activity both in peripheral tissues and the brain (tolcapone, Ro 41-0960, dinitrocatechol, vinylphenylk-etone), and (iii) atypical compounds, pyridine derivatives (CGP 28014,3-hydroxy-4-pyridone and its derivatives), some of which are not COMT inhibitors in vitro but inhibit catechol O-methylation by some other mechanism. The common features of the most new compounds are excellent potency, low toxicity and activity through oral administration. Their biochemical properties have been fairly well characterized. Most of these compounds have an excellent selectivity in that they do not affect any other enzymes studied [2,3]. [Pg.336]

Vitamin B12 (Fig. 1) is defined as a group of cobalt-containing conoids known as cobalamins. The common features of the vitamers are a corrin ting (four reduced pyrrole rings) with cobalt as the central atom, a nucleotide-like compound and a variable ligand. Vitamin B12 is exceptional in as far as it is the only vitamin containing a metal-ion. The vitamers present in biological systems are hydroxo-, aquo-, methyl-, and 5 -deoxyadenosylcobalamin. [Pg.1291]

It is important to learn if the same intermediate forms in several reactions, for if so its identity will very likely be manifest by the common features that can be observed. Here is an example cited by Bunnett.6 It was suspected that the reaction of chlorobenzene with potassium amide in liquid ammonia occurs by way of benzyne. Experiments were done with a I4C label (blackened) at the 1-position.14 The reaction gives equal amounts of aniline-1-14C and aniline-2-l4C,... [Pg.110]

The common feature of galvanostatic electrochemical promotion experiments is that, both in the case of O2 and Na+-conductors, one obtains pronounced changes in catalytic rate which are orders of magnitude larger than the rate of supply of ions onto the catalyst surface. [Pg.137]


See other pages where The Common Feature is mentioned: [Pg.505]    [Pg.29]    [Pg.831]    [Pg.323]    [Pg.277]    [Pg.407]    [Pg.426]    [Pg.123]    [Pg.247]    [Pg.202]    [Pg.831]    [Pg.177]    [Pg.37]    [Pg.49]    [Pg.393]    [Pg.437]    [Pg.31]    [Pg.35]    [Pg.123]    [Pg.102]    [Pg.335]    [Pg.83]    [Pg.1]    [Pg.404]    [Pg.484]   


SEARCH



Common feature

© 2024 chempedia.info