Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The chemistry of continental waters

More recent calculations such as those in this book indicate substantially lower saturation depths. Those calculated here are plotted in Figure 4.21. The SD is generally about 1 km deeper than that presented by Berger (1977). Clearly the new SD is much deeper than the R0 and appears only loosely related to the FL. Indeed, in the equatorial eastern Atlantic Ocean, the FL is about 600 m shallower than the SD. If these new calculations are even close to correct, the long cherished idea of a "tight" relation between seawater chemistry and carbonate depositional facies must be reconsidered. However, the major control of calcium carbonate accumulation in deep sea sediments, with the exceptions of high latitude and continental slope sediments, generally remains the chemistry of the water. This fact is clearly shown by the differences between the accumulation of calcium carbonate in Atlantic and Pacific ocean sediments, and the major differences in the saturation states of their deep waters. [Pg.163]

Having examined the chemistry of estuarine environments, we now turn to global chemical cycling in the open ocean. This chapter began by noting that the major ion chemistry of seawater is different from that of continental surface waters (Table 6.1). Three principal features clearly mark this difference ... [Pg.189]

Weathering of continental rocks increases their TDS and concentrations of calcium and bicarbonate relative to sodium and chloride. The composition of streams so affected plot to the left of both diagrams and include the Columbia, Mississippi, Yukon, and Thames rivers. Evaportranspiration from arid climate drainage basins and streams such as the Colorado, Pecos, and Jordan rivers, which receive soil runoff and irrigation return waters, further increase the Na and TDS content of streams. Concomitant precipitation of CaC03 further shifts the prevalent chemical character of such streams back toward NaCl and the chemistry of seawater. [Pg.296]

The overall effect of the terrestrial weathering reactions has been the addition of the major ions, DSi, and alkalinity to river water and the removal of O2, and CO2 from the atmosphere. Because the major ions are present in high concentrations in crustal rocks and are relatively soluble, they have become the most abimdant solutes in seawater. Mass-wise, the annual flux of solids from river runoff (1.55 x 10 g/y) in the pre-Anthropocene was about three times greater than that of the solutes (0.42 x 10 g/y). The aeolian dust flux (0.045 X 10 g/y) to the ocean is about 30 times less than the river solids input. Although most of the riverine solids are deposited on the continental margin, their input has a significant impact on seawater chemistry because most of these particles are clay minerals that have cations adsorbed to their surfaces. Some of these cations are desorbed... [Pg.529]

Differentiation of other terrestrial planets must have varied in important ways from that of the Earth, because of differences in chemistry and conditions. For example, in Chapter 13, we learned that the crusts of the Moon and Mars are anorthosite and basalt, respectively - both very different from the crust of the Earth. N either has experienced recycling of crust back into the mantle, because of the absence of plate tectonics, and neither has sufficient water to help drive repeated melting events that produced the incompatible-element-rich continental crust (Taylor and McLennan, 1995). The mantles of the Moon and Mars are compositionally different from that of the Earth, although all are ultramafic. Except for these bodies, our understanding of planetary differentiation is rather unconstrained and details are speculative. [Pg.507]

Other reactions of probable less importance than those above leading to undersaturated conditions with respect to calcium carbonate near the sediment-water interface include nitrate reduction and fermentation (e.g., Aller, 1980). Such reactions may also be important near the sediment-water interface of continental shelf and slope sediments, where bioturbation and bioirrigation can result in enhanced transport of reactants. Generally, as water depth increases over continental slope sediments, the depth within the sediment at which significant sulfate reduction commences also increases. It is probable that the influence of reactions other than sulfate reduction on carbonate chemistry may increase with increasing water depth. [Pg.273]


See other pages where The chemistry of continental waters is mentioned: [Pg.141]    [Pg.145]    [Pg.147]    [Pg.149]    [Pg.151]    [Pg.153]    [Pg.155]    [Pg.157]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.165]    [Pg.167]    [Pg.169]    [Pg.171]    [Pg.173]    [Pg.177]    [Pg.179]    [Pg.141]    [Pg.145]    [Pg.147]    [Pg.149]    [Pg.151]    [Pg.153]    [Pg.155]    [Pg.157]    [Pg.159]    [Pg.161]    [Pg.163]    [Pg.165]    [Pg.167]    [Pg.169]    [Pg.171]    [Pg.173]    [Pg.177]    [Pg.179]    [Pg.430]    [Pg.182]    [Pg.12]    [Pg.223]    [Pg.74]    [Pg.2499]    [Pg.3455]    [Pg.436]    [Pg.146]    [Pg.117]    [Pg.352]    [Pg.579]    [Pg.84]    [Pg.3]    [Pg.19]    [Pg.574]    [Pg.518]    [Pg.563]    [Pg.212]    [Pg.2214]    [Pg.2469]    [Pg.2519]    [Pg.2812]    [Pg.3748]    [Pg.4928]    [Pg.11]   


SEARCH



Continental

Continental waters

The Chemistry of Water

Water chemistry

© 2024 chempedia.info