Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetrazole 3+2 cycloaddition

The reaction is illustrated by the intramolecular cycloaddition of the nitrilimine (374) with the alkenic double bond separated from the dipole by three methylene units. The nitrilimine (374) was generated photochemically from the corresponding tetrazole (373) and the pyrrolidino[l,2-6]pyrazoline (375) was obtained in high yield 82JOC4256). Applications of a variety of these reactions will be found in Chapter 4.36. Other aspects of intramolecular 1,3-dipolar cycloadditions leading to complex, fused systems, especially when the 1,3-dipole and the dipolarophile are substituted into a benzene ring in the ortho positions, have been described (76AG(E)123). [Pg.148]

With excess of diazomethane in ether 12% of l-(4-nitrophenyl)tetrazole are formed in a 1,3-dipolar cycloaddition (see Zollinger, 1995, Sec. 6.5). [Pg.340]

The parent tetrazole derivative of glyphosate 78 has been reported as a product of the 1,3-dipolar cycloaddition of n-Bu3SnN3 across the nitrile linkage in 76 and subsequent hydrolysis of the resulting diester 77 (62). [Pg.30]

Another important click reaction is the cycloaddition of azides. The addition of sodium azide to nitriles to give l//-tetrazoles is shown to proceed readily in water with zinc salts as catalysts (Eq. 11.71).122 The scope of the reaction is quite broad a variety of aromatic nitriles, activated and nonactivated alkyl nitriles, substituted vinyl nitriles, thiocyanates, and cyanamides have all been shown to be viable substrates for this reaction. The reaction of an arylacetylene with an azide in hot water gave 1,4-disubstituted 1,2,3-triazoles in high yields,123 while a similar reaction between a terminal aliphatic alkyne and an azide (except 111 - nitroazidobenzcnc) afforded a mixture of regioisomers with... [Pg.366]

The 1,3-dipolar cycloadditions of N3 with coordinated nitriles (211) may result in formation of 5-substituted tetrazole complexes (212). Some examples include [Co(NH3)5(N4R)]2+-(R =p-methylphenyl, /uchlorophenyl, /unitrophenyl (N1 bound), m-formylphenyl N2 bound)). [Pg.77]

A. Dondoni and A. Marra, Addressing the scope of the azide-nitrile cycloaddition in glycoconjugate chemistry. The assembly of C-glycoclusters on a calix[4] arene scaffold through tetrazole spacers, Tetrahedron, 63 (2007) 6339-6345. [Pg.366]

Aryl and vinyl nitriles have been prepared very efficiently from the corresponding bromides by palladium-catalyzed reactions under microwaves. This energy source has been employed for the conversion of these nitriles into aryl and vinyl tetrazoles by cycloaddition reactions with sodium azide (Scheme 9.66). The direct transformation of aryl halides to the aryl tetrazoles in a one pot procedure could be accomplished both in solution and on a solid support [115], The reactions were complete in a few minutes, a reaction time considerably shorter than those previously reported for the thermal reactions. The cydoadditions were performed with sodium azide and ammonium chloride in DMF and, although no explosion occurred in the development of this work, the authors point out the necessity of taking adequate precautions against this eventuality. [Pg.334]

An improvement of the palladium-catalyzed cyanation of aryl bromides, in which zinc cyanide was used as the cyanide source, was reported in the middle of the nineties [49], Typically, the conversion from halide to nitrile takes at least 5 h by this route and the subsequent cycloaddition to the tetrazole is known to require even longer reaction times. [Pg.395]

A single-mode microwave procedure has been reported for the palladium-catalyzed preparation of both aryl and vinyl nitriles from the corresponding bromides. The reaction times were short and full conversions were achieved in just a few minutes (Eq. 11.33) [50], The cycloadditions to yield the tetrazoles needed slightly longer reaction times, from 10 to 25 min, but only 20 W of power was required as a temperature of 220 °C was reached after 10 min heating. The yields in this step ranged from 36% to 96%. This method for transforming halides into tetrazoles has been used for the synthesis of a novel HIV-protease inhibitor [50],... [Pg.395]

The reaction of tetrazole 132 with thiophosgene leads to [l,2,4]triazolo[3,4+][l,3,4]thiadiazoles 49. The reaction involves the in situ generation of aryldiazomethanes by decomposition of the tetrazole, followed by two cycloadditions (Equation 38) <1999CPA215>. [Pg.343]

Another theoretical investigation deals with the intramolecular [3+2] dipolar cycloaddition (Huisgen reaction) of azides and nitriles (Scheme 2) to form tetrazoles <2003JOC9076>. [Pg.352]

In addition, the mechanism of the zinc-catalyzed [3+2] dipolar cycloaddition of azides and nitriles to form tetrazoles was examined <2003JA9983>. The energy barrier of the reaction is lowered by 5-6kcalmol 1 which corresponds to an acceleration of 3 1 orders of magnitude. The source of the catalytic activity seems to be the coordination of the Lewis acidic zinc halide to the nitrile, which is supported by model calculations. Also AICI3 was examined as another Lewis acid which catalyzes the reaction to a greater extent than ZnBr2-... [Pg.353]

The [3+2] cycloaddition of azides to double and triple bond systems has found considerable interest over the last couple of years. The reaction can either be performed under thermal conditions or by copper(i) catalysis <2001AG(E)2004, 2002AG(E)2596>. In an attempt to broaden the chemistry of such cycloaddition processes, Sharpless et al. reported the generation of tetrazole derivatives 61 by an intramolecular process (Scheme 12). In... [Pg.358]

One has to realize that the cycloaddition products, namely the tetrazoles, are in equilibrium with the open chain azido form. The aromatic moiety of the phenol and aniline derivatives not only favors the formation of the cyclic... [Pg.360]

Ring synthesis including formation of the tetrazole ring by intramolecular 1,3-dipolar cycloadditions... [Pg.659]

Dipolar cycloaddition between azides and nitriles is also a well-established route to tetrazoles. If these two functional groups are closely located within one molecule, intramolecular cyclization can occur to yield fused tetrazoles. The present survey of the recent literature shows that this approach has also been successfully applied in some cases and led to the synthesis of novel ring systems belonging to this chapter. These results are depicted in Scheme 25. [Pg.659]

A substantial amount of research has been carried out in the field of tetrazole-fused sugars (rhamnose, mannose, and glucose derivatives) - mostly because of the biological importance of these derivatives. In many of these cases synthesis of the fused tetrazole moieties has been perfected by intramolecular 1,3-cycloaddition reactions with participation of a cyano and azido group. Some of these results are shown in Schemes 26 and 27. [Pg.660]

Density functional theory methods using the hybrid B3LYP functionals have been performed to study geometries and energetics of several intramolecular [2+3] dipolar cycloadditions of azides to nitriles (Section 11.06.6.1) toward fused tetrazole formation, including tetrazoles 14 and 15 <2003JOC9076>. [Pg.945]

A subsequent report outlined the synthesis of a diastereomer of tetrazole 58 that used similar methodology <1997TL4655>. Treatment of nitrile mesylate 60 with sodium azide affords D-talonotetrazole 62, presumably by intramolecular [1,3] dipolar cycloaddition of a 4-azido-4-deoxy-D-talonitrile intermediate 61. Acid hydrolysis affords the deprotected tetrazole 63 (Scheme 5). [Pg.952]

The formation of the tetrazoles 66 and 67 from 62 and 63, respectively, has been rationalized on the basis of the solvent-assisted opening of the initially formed iodonium ion to give the Ritter reaction intermediate 68, which undergoes cycloaddition with azide... [Pg.589]

The energetic 1,3,4-oxadiazole (22) is synthesized from the reaction of the tetrazole (20) with oxalyl chloride. In this reaction the tetrazole (20) undergoes a reverse cycloaddition with the expulsion of nitrogen and the formation of the 1,3-dipolar diazoalkane (21) which reacts with the carbonyl groups of oxalyl chloride to form the 1,3,4-oxadiazole rings. [Pg.297]

Kinetic studies using the water-soluble nitrile li revealed first-order dependence in both nitrile and azide and one-half order dependence for zinc bromide. The mechanism of the addition of hydrazoic acid/azide ion to a nitrile to give a tetrazole has been debated, with evidence supporting both a two-step mechanism (Scheme 1, eq 2) and a concerted [2 + 3] cycloaddition (Scheme 1, eq 3). Our mechanistic studies to date imply that the role of zinc is not simply that of a Lewis acid a number of other Lewis acids were tested and caused little to no acceleration of the reaction. In contrast, Zn exhibited a 10-fold rate acceleration at 0.03 M, which corresponds to a rate acceleration of approximately 300 at the concentrations typically used. The exact role of zinc is not yet clear. [Pg.182]


See other pages where Tetrazole 3+2 cycloaddition is mentioned: [Pg.146]    [Pg.878]    [Pg.91]    [Pg.32]    [Pg.34]    [Pg.126]    [Pg.289]    [Pg.13]    [Pg.233]    [Pg.249]    [Pg.661]    [Pg.952]    [Pg.316]    [Pg.32]    [Pg.106]    [Pg.624]    [Pg.638]    [Pg.640]    [Pg.648]    [Pg.653]    [Pg.658]    [Pg.659]    [Pg.664]    [Pg.668]    [Pg.669]    [Pg.670]    [Pg.902]    [Pg.904]    [Pg.88]   
See also in sourсe #XX -- [ Pg.471 ]




SEARCH



1.3- Dipolar cycloaddition Tetrazole synthesis

Dipolar cycloadditions 1,2,3,4-tetrazoles from

© 2024 chempedia.info