Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Termination, definition

Synonyms Dimethyl silicones and siloxanes, hydroxy-terminated Dimeth-yisiloxane, hydroxy-terminated Poly [oxy (dimethylsilylene)], a-hydro-co-hydroxy- Siloxanes and silicones, dimethyl, hydroxy-terminated Definition Dimethyl silicone terminated with hydroxyl groups Properties Anionic Toxicology TSCA listed... [Pg.1082]

To calculate weakest preconditions, we define the function WV S). >p, and consider the postcondition True. The definition of yV P S).ip is mostfy standard, except that we consider that expressions can raise exceptions and prevent proper termination. We, therefore, use auxiiiary functions that determine when a expression or a command terminates. Definitions are provided in [13], afong with calcu-fations for the quadratic solver. [Pg.166]

Synonyms Siloxanes and silicones, dimethyl, [(1-oxooctadecyl)oxy]-terminated Definition Ester of dimethiconoi and stearic acid Ionic Nature Nonionic... [Pg.2084]

In Chap. 5, p was defined as the fraction (or probability) of functional groups that had reacted at a certain point in the polymerization. According to the current definition provided by Eq. (6.66), p is the fraction (or probability) of propagation steps among the combined total of propagation and termination steps. The quantity 1 - p is therefore the fraction (or... [Pg.383]

The kinetic chain length has a slightly different definition in the presence of chain transfer. Instead of being simply the ratio Rp/R, it is redefined to be the rate of propagation relative to the rates of all other steps that compete with propagation specifically, termination and transfer (subscript tr) ... [Pg.389]

In the extreme case where rjrj =0 because both rj and i2 equal zero, the copolymer adds monomers with perfect alternation. This is apparent from the definition of r, which compares the addition of the same monomer to the other monomer for a particular radical. If both r s are zero, there is no tendency for a radical to add a monomer of the same kind as the growing end, whichever species is the terminal unit. When only one of the r s is zero, say rj, then alternation occurs whenever the radical ends with an Mj unit. There is thus a tendency toward alternation in this case, although it is less pronounced than in the case where both r s are zero. Accordingly, we find increasing tendency toward alternation as rj 0 and rj 0, or, more succinctly, as the product X1X2 0. [Pg.432]

These observations suggest how the terminal mechanism can be proved to apply to a copolymerization reaction if experiments exist which permit the number of sequences of a particular length to be determined. If this is possible, we should count the number of Mi s (this is given by the copolymer composition) and the number of Mi Mi and Mi Mi Mi sequences. Specified sequences, of any definite composition, of two units are called dyads those of three units, triads those of four units, tetrads those of five units, pentads and so on. Next we examine the ratio NmjMi/Nmi nd NmjMiMi/NmiMi If these are the same, then the mechanism is shown to have terminal control if not, it may be penultimate control. To prove the penultimate model it would also be necessary to count the number of Mi tetrads. If the tetrad/triad ratio were the same as the triad/dyad ratio, the penultimate model is proved. [Pg.456]

The equations for counterflow ate identical to equations for parallel flow except for the definitions of the terminal temperature differences. Counterflow heat exchangers ate much mote efficient, ie, these requite less area, than the parallel flow heat exchangers. Thus the counterflow heat exchangers ate always preferred ia practice. [Pg.486]

Eirst of all, what is meant by a solid surface Ideally the surface should be defined as the plane at which the solid terminates, that is, the last atom layer before the adjacent phase (vacuum, vapor, liquid, or another solid) begins. Unfortunately such a definition is impractical because the effect of termination extends into the solid beyond the outermost atom layer. Indeed, the current definition is based on that knowledge, and the surface is thus regarded as consisting of that number of atom layers over which the effect of termination of the solid decays until bulk properties are reached. In practice, this decay distance is of the order of 5-20 nm. [Pg.1]

The throw of downward-projected heated jets or upward-projected chilled jets can be derived from Eqs. (7.85) and (7.88) for K equal to some value, e.g., 0.1. Helander and Jakowatz, in their work on heated jets projected downward, have called attention to some of the differences between the actual conditions and those assumed for analysis. One of these is the radial escape of warm air in the terminal zone of a hot stteam projected downward. This escaping warm air then rises and causes a change in ambient conditions for the upper part of the jet. The terminal zone and the edges of the jet are zones of marked instability, with definite surges and fluctuations, so that the jet envelope is very difficult to define or to determine experimentally. In the closure to the paper presented by Knaak, Dr. Helander suggested that from the point of view of practical application, the distance to the beginning of the unstable, tet-minal zone of the jet is about 80% of the jet throw. [Pg.464]

Premature termination of Task Definition / Strategy selection... [Pg.184]

The first example of homogeneous transition metal catalysis in an ionic liquid was the platinum-catalyzed hydroformylation of ethene in tetraethylammonium trichlorostannate (mp. 78 °C), described by Parshall in 1972 (Scheme 5.2-1, a)) [1]. In 1987, Knifton reported the ruthenium- and cobalt-catalyzed hydroformylation of internal and terminal alkenes in molten [Bu4P]Br, a salt that falls under the now accepted definition for an ionic liquid (see Scheme 5.2-1, b)) [2]. The first applications of room-temperature ionic liquids in homogeneous transition metal catalysis were described in 1990 by Chauvin et al. and by Wilkes et ak. Wilkes et al. used weekly acidic chloroaluminate melts and studied ethylene polymerization in them with Ziegler-Natta catalysts (Scheme 5.2-1, c)) [3]. Chauvin s group dissolved nickel catalysts in weakly acidic chloroaluminate melts and investigated the resulting ionic catalyst solutions for the dimerization of propene (Scheme 5.2-1, d)) [4]. [Pg.214]

Although beyond the scope of the present discussion, another key realization that has shaped the definition of click chemistry in recent years was that while olefins, through their selective oxidative functionalization, provide convenient access to reactive modules, the assembly of these energetic blocks into the final structures is best achieved through cydoaddition reactions involving carbon-het-eroatom bond formation, such as [l,3]-dipolar cydoadditions and hetero-Diels-Al-der reactions. The copper(i)-catalyzed cydoaddition of azides and terminal alkynes [5] is arguably the most powerful and reliable way to date to stitch a broad variety... [Pg.445]

Many emulsion polymerizations can be described by so-called zero-one kinetics. These systems are characterized by particle sizes that are sufficiently small dial entry of a radical into a particle already containing a propagating radical always causes instantaneous termination. Thus, a particle may contain either zero or one propagating radical. The value of n will usually be less than 0.4. In these systems, radical-radical termination is by definition not rate determining. Rates of polymerization are determined by the rates or particle entry and exit rather than by rates of initiation and termination. The main mechanism for exit is thought to be chain transfer to monomer. It follows that radical-radical termination, when it occurs in the particle phase, will usually be between a short species (one that lias just entered) and a long species. [Pg.250]

Before I proceed with the discussion of the dediazoniation mechanism, it is necessary to spend some paragraphs considering the definition of the term crisis as used by Kuhn. As already discussed in Section 8.3 the crisis was terminated by the experiments which demonstrated that the first step in Scheme 9-2 is reversible (mechanism B), or in other words that a simple organic compound, the phenyl cation, does react with N2 molecules. [Pg.216]

Another definition, taking into account polymerization conversion, has been more recently proposed.192 Perfect dendrimers present only terminal- and dendritic-type units and therefore have DB = 1, while linear polymers have DB = 0. Linear units do not contribute to branching and can be considered as structural defects present in hyperbranched polymers but not in dendrimers. For most hyperbranched polymers, nuclear magnetic resonance (NMR) spectroscopy determinations lead to DB values close to 0.5, that is, close to the theoretical value for randomly branched polymers. Slow monomer addition193 194 or polycondensations with nonequal reactivity of functional groups195 have been reported to yield polymers with higher DBs (0.6-0.66 range). [Pg.57]

Let us briefly discuss the theoretical results providing the basis for the improved efficiency of branch-and-bound algorithms. Let F = [x g(.x) lower-bound test. Then, the set L, defined by L =Fr X%, contains all the partial solutions, which can be terminated only by an equivalence relation. Recall that, by definition, no node in X% can be terminated by a dominance rule. [Pg.286]

A great deal of confusion exists in the definitions chosen by different authors (and by the same authors on different occasions) for the rate constants for initiation and termination. The factor 2 expressing the fact that two radicals are created or destroyed in the respective processes is sometimes incorporated in the rate constants. Here we have consistently taken kd, h, and kt to represent the rate constants for the reactions as ordinarily written, hence the 2 is not included in the rate constant. Results expressed otherwise have been converted to this basis. [Pg.132]

Such a mechanism is open to serious objections both on theoretical and experimental grounds. Cationic polymerizations usually are conducted in media of low dielectric constant in which the indicated separation of charge, and its subsequent increase as monomer adds to the chain, would require a considerable energy. Moreover, termination of chains growing in this manner would be a second-order process involving two independent centers such as occurs in free radical polymerizations. Experimental evidence indicates a termination process of lower order (see below). Finally, it appears doubtful that a halide catalyst is effective without a co-catalyst such as water, alcohol, or acetic acid. This is quite definitely true for isobutylene, and it may hold also for other monomers as well. [Pg.219]


See other pages where Termination, definition is mentioned: [Pg.213]    [Pg.518]    [Pg.997]    [Pg.114]    [Pg.699]    [Pg.490]    [Pg.430]    [Pg.381]    [Pg.717]    [Pg.129]    [Pg.347]    [Pg.452]    [Pg.608]    [Pg.629]    [Pg.630]    [Pg.213]    [Pg.331]    [Pg.141]    [Pg.55]    [Pg.489]    [Pg.66]    [Pg.289]    [Pg.411]    [Pg.194]    [Pg.115]    [Pg.4]    [Pg.22]    [Pg.24]    [Pg.251]    [Pg.460]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Primary radical termination definition

Terminal alkyne definition

Termination reactions, definition

© 2024 chempedia.info