Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation, terminal

Physiological Role of Citric Acid. Citric acid occurs ia the terminal oxidative metabolic system of virtually all organisms. This oxidative metabohc system (Fig. 2), variously called the Krebs cycle (for its discoverer, H. A. Krebs), the tricarboxyUc acid cycle, or the citric acid cycle, is a metaboHc cycle involving the conversion of carbohydrates, fats, or proteins to carbon dioxide and water. This cycle releases energy necessary for an organism s growth, movement, luminescence, chemosynthesis, and reproduction. The cycle also provides the carbon-containing materials from which cells synthesize amino acids and fats. Many yeasts, molds, and bacteria conduct the citric acid cycle, and can be selected for thek abiUty to maximize citric acid production in the process. This is the basis for the efficient commercial fermentation processes used today to produce citric acid. [Pg.182]

The Jacobsen-Katsuki epoxidation reaction is an efficient and highly selective method for the preparation of a wide variety of structurally and electronically diverse chiral epoxides from olefins. The reaction involves the use of a catalytic amount of a chiral Mn(III)salen complex 1 (salen refers to ligands composed of the N,N -ethylenebis(salicylideneaminato) core), a stoichiometric amount of a terminal oxidant, and the substrate olefin 2 in the appropriate solvent (Scheme 1.4.1). The reaction protocol is straightforward and does not require any special handling techniques. [Pg.29]

A number of reaction variables or parameters have been examined. Catalyst solutions should not be prepared and stored since the resting catalyst is not stable to long term storage. However, the catalyst solution must be aged prior to the addition of allylic alcohol or TBHP. Diethyl tartrate and diisopropyl tartrate are the ligands of choice for most allylic alcohols. TBHP and cumene hydroperoxide are the most commonly used terminal oxidant and are both extremely effective. Methylene chloride is the solvent of choice and Ti(i-OPr)4 is the titanium precatalyst of choice. Titanium (IV) t-butoxide is recommended for those reactions in which the product epoxide is particularly sensitive to ring opening from alkoxide nucleophiles. ... [Pg.54]

There are several available terminal oxidants for the transition metal-catalyzed epoxidation of olefins (Table 6.1). Typical oxidants compatible with most metal-based epoxidation systems are various alkyl hydroperoxides, hypochlorite, or iodo-sylbenzene. A problem associated with these oxidants is their low active oxygen content (Table 6.1), while there are further drawbacks with these oxidants from the point of view of the nature of the waste produced. Thus, from an environmental and economical perspective, molecular oxygen should be the preferred oxidant, because of its high active oxygen content and since no waste (or only water) is formed as a byproduct. One of the major limitations of the use of molecular oxygen as terminal oxidant for the formation of epoxides, however, is the poor product selectivity obtained in these processes [6]. Aerobic oxidations are often difficult to control and can sometimes result in combustion or in substrate overoxidation. In... [Pg.186]

The Sharpless-Katsuki asymmetric epoxidation (AE) procedure for the enantiose-lective formation of epoxides from allylic alcohols is a milestone in asymmetric catalysis [9]. This classical asymmetric transformation uses TBHP as the terminal oxidant, and the reaction has been widely used in various synthetic applications. There are several excellent reviews covering the scope and utility of the AE reaction... [Pg.188]

The AE reaction catalyzed by titanium tartrate 1 and with alkyl hydroperoxide as terminal oxidant has been applied to a large variety of primary allylic alcohols containing all eight basic substitution patterns. A few examples are presented in Table 6.2. [Pg.191]

Epoxidation systems based on molybdenum and tungsten catalysts have been extensively studied for more than 40 years. The typical catalysts - MoVI-oxo or WVI-oxo species - do, however, behave rather differently, depending on whether anionic or neutral complexes are employed. Whereas the anionic catalysts, especially the use of tungstates under phase-transfer conditions, are able to activate aqueous hydrogen peroxide efficiently for the formation of epoxides, neutral molybdenum or tungsten complexes do react with hydrogen peroxide, but better selectivities are often achieved with organic hydroperoxides (e.g., TBHP) as terminal oxidants [44, 45],... [Pg.195]

Homogeneous Systems Using Molybdenum and Tungsten Catalysts and Alkyl Hydroperoxides or Hydrogen Peroxide as the Terminal Oxidant... [Pg.196]

The introduction of chlorinated porphyrins (10) allowed for hydrogen peroxide to be used as terminal oxidant [62], These catalysts, discovered by Mansuy and coworkers, were demonstrated to resist decomposition, and efficient epoxidations of olefins were achieved when they were used together with imidazole or imidazo-lium carboxylates as additives, (Table 6.6, Entries 1 and 2). [Pg.201]

The observation that addition of imidazoles and carboxylic acids significantly improved the epoxidation reaction resulted in the development of Mn-porphyrin complexes containing these groups covalently linked to the porphyrin platform as attached pendant arms (11) [63]. When these catalysts were employed in the epoxidation of simple olefins with hydrogen peroxide, enhanced oxidation rates were obtained in combination with perfect product selectivity (Table 6.6, Entry 3). In contrast with epoxidations catalyzed by other metals, the Mn-porphyrin system yields products with scrambled stereochemistry the epoxidation of cis-stilbene with Mn(TPP)Cl (TPP = tetraphenylporphyrin) and iodosylbenzene, for example, generated cis- and trans-stilbene oxide in a ratio of 35 65. The low stereospecificity was improved by use of heterocyclic additives such as pyridines or imidazoles. The epoxidation system, with hydrogen peroxide as terminal oxidant, was reported to be stereospecific for ris-olefins, whereas trans-olefins are poor substrates with these catalysts. [Pg.202]

The second major discovery regarding the use of MTO as an epoxidation catalyst came in 1996, when Sharpless and coworkers reported on the use of substoichio-metric amounts of pyridine as a co-catalyst in the system [103]. A change of solvent from tert-butanol to dichloromethane and the introduction of 12 mol% of pyridine even allowed the synthesis of very sensitive epoxides with aqueous hydrogen peroxide as the terminal oxidant. A significant rate acceleration was also observed for the epoxidation reaction performed in the presence of pyridine. This discovery was the first example of an efficient MTO-based system for epoxidation under neutral to basic conditions. Under these conditions the detrimental acid-induced decomposition of the epoxide is effectively avoided. With this novel system, a variety of... [Pg.211]

High-valent ruthenium oxides (e. g., Ru04) are powerful oxidants and react readily with olefins, mostly resulting in cleavage of the double bond [132]. If reactions are performed with very short reaction times (0.5 min.) at 0 °C it is possible to control the reactivity better and thereby to obtain ds-diols. On the other hand, the use of less reactive, low-valent ruthenium complexes in combination with various terminal oxidants for the preparation of epoxides from simple olefins has been described [133]. In the more successful earlier cases, ruthenium porphyrins were used as catalysts, especially in combination with N-oxides as terminal oxidants [134, 135, 136]. Two examples are shown in Scheme 6.20, terminal olefins being oxidized in the presence of catalytic amounts of Ru-porphyrins 25 and 26 with the sterically hindered 2,6-dichloropyridine N-oxide (2,6-DCPNO) as oxidant. The use... [Pg.221]

Table 6.12 Transition metal-catalyzed epoxidation of olefins with H202 as terminal oxidant. Table 6.12 Transition metal-catalyzed epoxidation of olefins with H202 as terminal oxidant.
In conclusion, the above summary of oxidation methods shows that there is still room for further improvements in the field of selective olefin epoxidation. The development of active and selective catalysts capable of oxidizing a broad range of olefin substrates with aqueous hydrogen peroxide as terminal oxidant in inexpensive and environmentally benign solvents remains a continuing challenge. [Pg.225]


See other pages where Oxidation, terminal is mentioned: [Pg.523]    [Pg.287]    [Pg.29]    [Pg.31]    [Pg.34]    [Pg.34]    [Pg.35]    [Pg.186]    [Pg.187]    [Pg.188]    [Pg.192]    [Pg.195]    [Pg.197]    [Pg.197]    [Pg.198]    [Pg.200]    [Pg.201]    [Pg.201]    [Pg.205]    [Pg.206]    [Pg.207]    [Pg.209]    [Pg.211]    [Pg.215]    [Pg.215]    [Pg.216]    [Pg.218]    [Pg.219]    [Pg.219]    [Pg.221]    [Pg.222]    [Pg.224]    [Pg.225]    [Pg.448]   
See also in sourсe #XX -- [ Pg.136 ]

See also in sourсe #XX -- [ Pg.115 , Pg.257 ]




SEARCH



Terminal oxidant

Termination, oxidation

© 2024 chempedia.info