Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor pressure temperature effects

Table III. Phase and Temperature (Vapor Pressure) Effects on C8 Products from tert-C H. Reaction with Isobutylene... Table III. Phase and Temperature (Vapor Pressure) Effects on C8 Products from tert-C H. Reaction with Isobutylene...
Under fuel cell operation, a finite proton current density, 0, and the associated electro-osmotic drag effect will further affect the distribution and fluxes of water in the PEM. After relaxation to steady-state operation, mechanical equilibrium prevails locally to fix the water distribution, while chemical equilibrium is rescinded by the finite flux of water across the membrane surfaces. External conditions defined by temperature, vapor pressures, total gas pressures, and proton current density are sufficient to determine the stationary distribution and the flux of water. [Pg.373]

Above the crossover pressure, the opposite eifect occurs. This behavior can be understood by considering two opposing effects of temperature on solubility (Chimowitz 2005). The vapor pressure of the solid solute always increases with temperature, while the density (or solvent power) of supercritical carbon dioxide decreases. Below the crossover pressure where the compressibility is larger, the density effect dominates, and the solubility decreases with increasing temperature. At pressures above the crossover pressure, the vapor-pressure effect dominates hence solubility increases with temperature. [Pg.5]

The region of pressure below the crossover pressure is known as the retrograde region. In this range of pressure, solubility decreases with an increase in temperature because the density of the SCF falls sharply. The decrease in density is sufficient to overcome any increases in solute vapor pressure that would normally lead to an increase in solubility. Above the crossover pressure, the decrease in solvent density is less sensitive to temperature and so solubility increases with temperature because the vapor pressure effect becomes dominant. [Pg.52]

Second, from a brief study of the temperature and pressure effects of the phase change that occurs during cavitation (so-called thermodynamic effects), it is shown that temperatures and pressures within a cavitated region can be appreciably less than free-stream values of temperature and vapor pressure. Such effects appear to be significant factors affecting pump performance, and have been related to the different properties of the liquids being considered... [Pg.304]

We can now use the K-value expression to calculate various equilibrium properties and perform typical flash calculations. As with the simple thermodynamic approach, we can use the heat capacities, and heats of vaporization to obtain enthalpy balances for vapor and liquid streams. In addition, since we account for vapor- and liquid-phase non-ideality due to component interactions, and temperature and pressure effects, we can also apply standard thermodynamic relationships to compute excess properties for enthalpies, etc. The excess properties account for deviations from an ideal mixing behavior and the resulting deviations in equilibrium behavior. [Pg.46]

These effects of differential vapor pressures on isotope ratios are important for gases and liquids at near-ambient temperatures. As temperature rises, the differences for volatile materials become less and less. However, diffusion processes are also important, and these increase in importance as temperature rises, particularly in rocks and similar natural materials. Minerals can exchange oxygen with the atmosphere, or rocks can affect each other by diffusion of ions from one type into another and vice versa. Such changes can be used to interpret the temperatures to which rocks have been subjected during or after their formation. [Pg.365]

The choice of the solvent also has a profound influence on the observed sonochemistry. The effect of vapor pressure has already been mentioned. Other Hquid properties, such as surface tension and viscosity, wiU alter the threshold of cavitation, but this is generaUy a minor concern. The chemical reactivity of the solvent is often much more important. No solvent is inert under the high temperature conditions of cavitation (50). One may minimize this problem, however, by using robust solvents that have low vapor pressures so as to minimize their concentration in the vapor phase of the cavitation event. Alternatively, one may wish to take advantage of such secondary reactions, for example, by using halocarbons for sonochemical halogenations. With ultrasonic irradiations in water, the observed aqueous sonochemistry is dominated by secondary reactions of OH- and H- formed from the sonolysis of water vapor in the cavitation zone (51—53). [Pg.262]

In contrast, the ultrasonic irradiation of organic Hquids has been less studied. SusHck and co-workers estabHshed that virtually all organic Hquids wiU generate free radicals upon ultrasonic irradiation, as long as the total vapor pressure is low enough to allow effective bubble coUapse (49). The sonolysis of simple hydrocarbons (for example, alkanes) creates the same kinds of products associated with very high temperature pyrolysis (50). Most of these products (H2, CH4, and the smaller 1-alkenes) derive from a weU-understood radical chain mechanism. [Pg.262]

Vapor Pressures and Adsorption Isotherms. The key variables affecting the rate of destmction of soHd wastes are temperature, time, and gas—sohd contacting. The effect of temperature on hydrocarbon vaporization rates is readily understood in terms of its effect on Hquid and adsorbed hydrocarbon vapor pressures. For Hquids, the Clausius-Clapeyron equation yields... [Pg.47]

Evaporation Retardants. Small molecule solvents that make up the most effective paint removers also have high vapor pressure and evaporate easily, sometimes before the remover has time to penetrate the finish. Low vapor pressure cosolvents are added to help reduce evaporation. The best approach has been to add a low melting point paraffin wax (mp = 46-57° C) to the paint remover formulation. When evaporation occurs the solvent is chilled and the wax is shocked-out forming a film on the surface of the remover that acts as a barrier to evaporation (5,6). The addition of certain esters enhances the effectiveness of the wax film. It is important not to break the wax film with excessive bmshing or scraping until the remover has penetrated and lifted the finish from the substrate. Likewise, it is important that the remover be used at warm temperatures, since at cool temperatures the wax film may not form, or if it does it will be brittle and fracture. Rapid evaporation occurs when the wax film is absent or broken. [Pg.550]

Vapor Toxicity. Laboratory exposure data indicate that vapor inhalation of alkan olamines presents low hazards at ordinary temperatures (generally, alkan olamines have low vapor pressures). Heated material may cause generation of sufficient vapors to cause adverse effects, including eye and nose irritation. If inhalation exposure is likely, approved respirators are suggested. Monoethan olamine and diethanolamine have OSHA TLVs of 3 ppm. [Pg.9]

Cavitation. The subject of cavitation in pumps is of great importance. When the Hquid static pressure is reduced below its vapor pressure, vaporization takes place. This may happen because (/) the main stream fluid velocity is too high, so that static pressure becomes lower than vapor pressure (2) localized velocity increases and static pressure drops on account of vane curvature effect, especially near the inlets (J) pressure drops across the valve or is reduced by friction in front of the pump or (4) temperature increases, giving a corresponding vapor pressure increase. [Pg.301]

Many factors affect the mechanisms and kinetics of sorption and transport processes. For instance, differences in the chemical stmcture and properties, ie, ionizahility, solubiUty in water, vapor pressure, and polarity, between pesticides affect their behavior in the environment through effects on sorption and transport processes. Differences in soil properties, ie, pH and percentage of organic carbon and clay contents, and soil conditions, ie, moisture content and landscape position climatic conditions, ie, temperature, precipitation, and radiation and cultural practices, ie, crop and tillage, can all modify the behavior of the pesticide in soils. Persistence of a pesticide in soil is a consequence of a complex interaction of processes. Because the persistence of a pesticide can govern its availabiUty and efficacy for pest control, as weU as its potential for adverse environmental impacts, knowledge of the basic processes is necessary if the benefits of the pesticide ate to be maximized. [Pg.219]


See other pages where Vapor pressure temperature effects is mentioned: [Pg.224]    [Pg.402]    [Pg.224]    [Pg.2811]    [Pg.219]    [Pg.224]    [Pg.224]    [Pg.1373]    [Pg.52]    [Pg.1372]    [Pg.128]    [Pg.52]    [Pg.309]    [Pg.222]    [Pg.1208]    [Pg.299]    [Pg.1447]    [Pg.18]    [Pg.171]    [Pg.519]    [Pg.11]    [Pg.647]    [Pg.1904]    [Pg.327]    [Pg.262]    [Pg.342]    [Pg.433]    [Pg.512]    [Pg.512]    [Pg.513]    [Pg.16]    [Pg.126]    [Pg.342]    [Pg.501]    [Pg.298]    [Pg.373]   
See also in sourсe #XX -- [ Pg.354 , Pg.354 , Pg.355 ]

See also in sourсe #XX -- [ Pg.354 , Pg.354 , Pg.355 ]

See also in sourсe #XX -- [ Pg.358 , Pg.358 , Pg.359 ]




SEARCH



Vapor pressure effect

Vapor pressure temperature

Vapor temperature

Vaporization effect

Vaporizer temperature

© 2024 chempedia.info