Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature superposition principle

The time-temperature superpositioning principle was applied f to the maximum in dielectric loss factors measured on poly(vinyl acetate). Data collected at different temperatures were shifted to match at Tg = 28 C. The shift factors for the frequency (in hertz) at the maximum were found to obey the WLF equation in the following form log co + 6.9 = [ 19.6(T -28)]/[42 (T - 28)]. Estimate the fractional free volume at Tg and a. for the free volume from these data. Recalling from Chap. 3 that the loss factor for the mechanical properties occurs at cor = 1, estimate the relaxation time for poly(vinyl acetate) at 40 and 28.5 C. [Pg.269]

Fig. 49. Illustration of the time—temperature superposition principle as based on stress—relaxation data for polyisobutylene (299,300). To convert Pa to... Fig. 49. Illustration of the time—temperature superposition principle as based on stress—relaxation data for polyisobutylene (299,300). To convert Pa to...
Another important characteristic aspect of systems near the glass transition is the time-temperature superposition principle [23,34,45,46]. This simply means that suitably scaled data should all fall on one common curve independent of temperature, chain length, and time. Such generahzed functions which are, for example, known as generalized spin autocorrelation functions from spin glasses can also be defined from computer simulation of polymers. Typical quantities for instance are the autocorrelation function of the end-to-end distance or radius of gyration Rq of a polymer chain in a suitably normalized manner ... [Pg.504]

The WLF equation can be widely applied, and demonstrates the equivalence of time and temperature, the so-called time-temperature superposition principle, on the mechanical relaxations of an amorphous polymer. The equation holds up to about 100° above the glass transition temperature, but after that begins to break down. [Pg.110]

Since we are interested in this chapter in analyzing the T- and P-dependences of polymer viscoelasticity, our emphasis is on dielectric relaxation results. We focus on the means to extrapolate data measured at low strain rates and ambient pressures to higher rates and pressures. The usual practice is to invoke the time-temperature superposition principle with a similar approach for extrapolation to elevated pressures [22]. The limitations of conventional t-T superpositioning will be discussed. A newly developed thermodynamic scaling procedure, based on consideration of the intermolecular repulsive potential, is presented. Applications and limitations of this scaling procedure are described. [Pg.658]

To get accurate distributions of relaxation or retardation times, the expetimcntal data should cover about 10 or 15 decades of time. It is impossible to get experimental data covering such a great range of times at one temperature from a single type of experiment, such as creep or stress relaxation-t Therefore, master curves (discussed later) have been developed that cover the required time scales by combining data at different temperatures through the use of time-temperature superposition principles. [Pg.72]

There are two superposition principles that are important in the theory of Viscoelasticity. The first of these is the Boltzmann superposition principle, which describes the response of a material to different loading histories (22). The second is the time-temperature superposition principle or WLF (Williams, Landel, and Ferry) equation, which describes the effect of temperature on the time scale of the response. [Pg.73]

Time is the major (actor in determining the mechanical properties of a polymer. This is seen directly in creep and stress-relaxation experiments. These tests cover long periods of time, so that they are sensitive to the types of molecular motions that require long times. Tfrey give little direct information on the types of molecular motion that take place at short times. However, by using the time-temperature superposition principle and the WLF equations, access to these short times can be achieved even though they may not easily be attainable by direct experimentation. [Pg.118]

Because of equipment limitations in measuring stress and strain in polymers, the time-temperature superposition principle is used to develop the viscoelastic response curve for real polymers. For example, the time-dependent stress relaxation modulus as a function of time and temperature for a PMMA resin is shown in... [Pg.77]

Moreover, we note that recently in reconstructing relaxation times via the time-temperature superposition principle using double quantum nuclear magnetic resonance (DQ-NMR) the and power laws were invoked without giving the spatial information of NSE [75]. [Pg.54]

PPG (at higher temperatures) behaves like a typical pseudoplastic non-Newtonian fluid. The activation energy of the viscosity in dependence of shear rate (284-2846 Hz) and Mn was detected using a capillary rheometer in the temperature range of 150-180°C at 3.0-5.5 kJ/mol (28,900 Da) and 12-13 kJ/mol (117,700 Da) [15]. The temperature-dependent viscosity for a PPG of 46 kDa between 70 and 170°G was also determined by DMA (torsion mode). A master curve was constructed using the time-temperature superposition principle [62] at a reference temperature of 150°G (Fig. 5) (Borchardt and Luinstra, unpublished data). A plateau for G was not observed for this molecular weight. The temperature-dependent shift factors ax were used to determine the Arrhenius activation energy of about 25 kJ/mol (Borchardt and Luinstra, unpublished data). [Pg.38]

Apply time-temperature superposition principles to polymer moduli and calculate shift factors. [Pg.381]

The time-temperature superposition principle has practical applications. Stress relaxation experiments are practical on a time scale of 10 to 10 seconds (10 to 10 hours), but stress relaxation data over much larger time periods, including fractions of a second for impacts and decades for creep, are necessary. Temperature is easily varied in stress relaxation experiments and, when used to shift experimental data over shorter time intervals, can provide a master curve over relatively large time intervals, as shown in Figure 5.65. The master curves for several crystalline and amorphous polymers are shown in Figure 5.66. [Pg.458]

In general, polymers obey a time-temperature superposition principle ... [Pg.337]

Whatever the selected method (static, monotonous, or dynamic), it gives access to a limited range of timescales. For example it is almost impossible to perform static experiments in times less than 1 s, or dynamic tests at frequencies lower than 10 1 Hz, or tensile tests at strain rates higher than 103 s-1. These timescales are, however, indirectly accessible because the polymers generally obey a time-temperature superposition principle ... [Pg.349]

The effects of strain rate and temperature are correlated, and can be modeled (Kinloch and Young, 1983, Kinloch, 1985). For different temperatures and strain rates, GIc and the time to failure, tf, were measured. Using the time-temperature superposition principle, shift factors (aT) applicable to the time to failure tf, were determine. Shift factors plotted against (T — Tg) are independent of the type of test used (Fig. 12.14). The construction of a typical master curve GIc versus tf/aT is shown in Fig. 12.15 (Hunston et al., 1984). The value of GIc may be predicted for any strain rate/temperature combination. This model can also be applied to rubber-modified epoxies (See chapter 13). [Pg.387]

The peak of the dielectric loss of this process reflects its viscoelastic nature by obeying the time-temperature superposition principle, wherein the peak is shifted to higher temperatures for shorter times (higher frequencies) and vice versa. This process has been described by the Havriliak-Negami empirical formula [106, 108]... [Pg.565]

In an earlier section, we have shown that the viscoelastic behavior of homogeneous block copolymers can be treated by the modified Rouse-Bueche-Zimm model. In addition, the Time-Temperature Superposition Principle has also been found to be valid for these systems. However, if the block copolymer shows microphase separation, these conclusions no longer apply. The basic tenet of the Time-Temperature Superposition Principle is valid only if all of the relaxation mechanisms are affected by temperature in the same manner. Materials obeying this Principle are said to be thermorheologically simple. In other words, relaxation times at one temperature are related to the corresponding relaxation times at a reference temperature by a constant ratio (the shift factor). For... [Pg.199]

As an example of the concentration dependence of viscoelastic properties in Fig. 16.11 the shear creep compliance of poly(vinyl acetate) is plotted vs. time for solutions of poly(vinyl acetate) in diethyl phthalate with indicated volume fractions of polymer, reduced to 40 °C with the aid of the time temperature superposition principle (Oyanagi and Ferry, 1966). From this figure it becomes clear that the curves are parallel. We may conclude that the various may be shifted over the time axis to one curve, e.g. to the curve for pure polymer. In general it appears that viscoelastic properties measured at various concentrations may be reduced to one single curve at one concentration with the aid of a time-concentration superposition principle, which resembles the time-temperature superposition principle (see, e.g. Ferry, General references, 1980, Chap. 17). The Doolittle equation reads for this reduction ... [Pg.621]

This is none other than the time-temperature superposition principle. However, the exact shape of the function F(t) is not a generic feature of the theory. A good approximation is provided by the Kohlrausch stretched exponential function. In the frequency domain, Eqs. (23) define the shape of the susceptibility minimum usually observed in the gigahertz range, and an interpolation formula follows ... [Pg.160]

We expect that the modification creates the free volume (Vf) in wood substance from the similarity of the effect of and n on viscoelasticity. The discussion for wood, however, is impossible on the basis of a concept of the free volume, although the flexibility of molecular motion for synthetic amorphous polymers is discussed. Unfortunately, we can not directly know the created free volume because the time-temperature superposition principle is not valid for wood [19]. The principle is related to WLF equation by which the free volume is calculated. The free volume, however, relates to volumetric swelling as follows. [Pg.251]

T. Nakano, Time-temperature superposition principle on rclaxational behavior of wood as a multi-phase material. Holzals Roh-und Werkstoff 5i 39-42 (1995). [Pg.274]


See other pages where Temperature superposition principle is mentioned: [Pg.313]    [Pg.669]    [Pg.150]    [Pg.285]    [Pg.75]    [Pg.111]    [Pg.6]    [Pg.37]    [Pg.75]    [Pg.85]    [Pg.153]    [Pg.157]    [Pg.457]    [Pg.129]    [Pg.20]    [Pg.5]    [Pg.24]    [Pg.115]    [Pg.194]    [Pg.121]    [Pg.147]    [Pg.331]    [Pg.538]    [Pg.133]   
See also in sourсe #XX -- [ Pg.373 , Pg.382 ]




SEARCH



Frequency-temperature superposition principle

Superposition principle

Superpositioning

Superpositions

Temperature superposition

The Time-Temperature Superposition Principle

Time Temperature-Superposition-Principle (TTSP)Master Curves

Time-temperature equivalence superposition) principle

Time-temperature superposition principl

Time-temperature superposition principle

Time-temperature superposition principle TTSP)

Time-temperature superposition shift principle

© 2024 chempedia.info