Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature statistical-mechanical

The heat capacity and transition enthalpy data required to evaluate Sm T ) using Eq. 6.2.2 come from calorimetry. The calorimeter can be cooled to about 10 K with liquid hydrogen, but it is difficult to make measurements below this temperature. Statistical mechanical theory may be used to approximate the part of the integral in Eq. 6.2.2 between zero kelvins and the lowest temperature at which a value of Cp,m can be measured. The appropriate formula for nonmagnetic nonmetals comes from the Debye theory for the lattice vibration of a monatomic crystal. This theory predicts that at low temperatures (from 0 K to about 30 K), the molar heat capacity at constant volume is proportional to Cv,m = aT, ... [Pg.152]

Another important accomplislnnent of the free electron model concerns tire heat capacity of a metal. At low temperatures, the heat capacity of a metal goes linearly with the temperature and vanishes at absolute zero. This behaviour is in contrast with classical statistical mechanics. According to classical theories, the equipartition theory predicts that a free particle should have a heat capacity of where is the Boltzmann constant. An ideal gas has a heat capacity consistent with tliis value. The electrical conductivity of a metal suggests that the conduction electrons behave like free particles and might also have a heat capacity of 3/fg,... [Pg.128]

On the other hand, in the theoretical calculations of statistical mechanics, it is frequently more convenient to use volume as an independent variable, so it is important to preserve the general importance of the chemical potential as something more than a quantity GTwhose usefulness is restricted to conditions of constant temperature and pressure. [Pg.350]

The coefficients B, C, D, etc for each particular gas are tenned its second, third, fourth, etc. vihal coefficients, and are functions of the temperature only. It can be shown, by statistical mechanics, that 5 is a function of the interaction of an isolated pair of molecules, C is a fiinction of the simultaneous interaction of tln-ee molecules, D, of four molecules, etc., a feature suggested by the fomi of equation (A2.1.54). [Pg.355]

The grand canonical ensemble is a set of systems each with the same volume V, the same temperature T and the same chemical potential p (or if there is more than one substance present, the same set of p. s). This corresponds to a set of systems separated by diathennic and penneable walls and allowed to equilibrate. In classical thennodynamics, the appropriate fimction for fixed p, V, and Tis the productpV(see equation (A2.1.3 7)1 and statistical mechanics relates pV directly to the grand canonical partition function... [Pg.375]

Figure A2.2.2. The rotational-vibrational specific heat, C, of the diatomic gases HD, HT and DT as a fiinction of temperature. From Statistical Mechanics by Raj Pathria. Reprinted by pennission of Butterwortii Heinemann. Figure A2.2.2. The rotational-vibrational specific heat, C, of the diatomic gases HD, HT and DT as a fiinction of temperature. From Statistical Mechanics by Raj Pathria. Reprinted by pennission of Butterwortii Heinemann.
Statistical mechanical theory and computer simulations provide a link between the equation of state and the interatomic potential energy functions. A fluid-solid transition at high density has been inferred from computer simulations of hard spheres. A vapour-liquid phase transition also appears when an attractive component is present hr the interatomic potential (e.g. atoms interacting tlirough a Leimard-Jones potential) provided the temperature lies below T, the critical temperature for this transition. This is illustrated in figure A2.3.2 where the critical point is a point of inflexion of tire critical isothemr in the P - Vplane. [Pg.442]

Rushbrooke G 1940 On the statistical mechanics of assemblies whose energy-levels depend on temperature Trans. Faraday Soc. 36 1055... [Pg.555]

It has long been known from statistical mechanical theory that a Bose-Einstein ideal gas, which at low temperatures would show condensation of molecules into die ground translational state (a condensation in momentum space rather than in position space), should show a third-order phase transition at the temperature at which this condensation starts. Nonnal helium ( He) is a Bose-Einstein substance, but is far from ideal at low temperatures, and the very real forces between molecules make the >L-transition to He II very different from that predicted for a Bose-Einstein gas. [Pg.661]

Boltzmaim showed that the energy density emided per second from a unit surface of a black body is a7 where T is the temperature and a is the Stefan-Boltzmaim constant, but it takes statistical mechanics to produce the fonnula... [Pg.691]

Is the temperature 1/0 related to the variance of the momentum distribution as in the classical equipartition theorem It happens that there is no simple generalization of the equipartition theorem of classical statistical mechanics. For the 2N dimensional phase space F = (xi. .. XN,pi,.. -Pn) the ensemble average for a harmonic system is... [Pg.199]

The canonical ensemble is the name given to an ensemble for constant temperature, number of particles and volume. For our purposes Jf can be considered the same as the total energy, (p r ), which equals the sum of the kinetic energy (jT(p )) of the system, which depends upon the momenta of the particles, and the potential energy (T (r )), which depends upon tlie positions. The factor N arises from the indistinguishability of the particles and the factor is required to ensure that the partition function is equal to the quantum mechanical result for a particle in a box. A short discussion of some of the key results of statistical mechanics is provided in Appendix 6.1 and further details can be found in standard textbooks. [Pg.319]

Although the virial equation itself is easily rationalized on empirical grounds, the mixing rules of Eqs. (4-183) and (4-184) follow rigorously from the methods of statistical mechanics. The temperature derivatives of B and C are given exactly by... [Pg.529]

Thermal Properties at Low Temperatures For sohds, the Debye model developed with the aid of statistical mechanics and quantum theoiy gives a satisfactoiy representation of the specific heat with temperature. Procedures for calculating values of d, ihe Debye characteristic temperature, using either elastic constants, the compressibility, the melting point, or the temperature dependence of the expansion coefficient are outlined by Barron (Cryogenic Systems, 2d ed., Oxford University Press, 1985, pp 24-29). [Pg.1127]

About 1902, J. W. Gibbs (1839-1903) introduced statistical mechanics with which he demonstrated how average values of the properties of a system could be predicted from an analysis of the most probable values of these properties found from a large number of identical systems (called an ensemble). Again, in the statistical mechanical interpretation of thermodynamics, the key parameter is identified with a temperature, which can be directly linked to the thermodynamic temperature, with the temperature of Maxwell s distribution, and with the perfect gas law. [Pg.3]

The derivation of the transition state theory expression for the rate constant requires some ideas from statistical mechanics, so we will develop these in a digression. Consider an assembly of molecules of a given substance at constant temperature T and volume V. The total number N of molecules is distributed among the allowed quantum states of the system, which are determined by T, V, and the molecular structure. Let , be the number of molecules in state i having energy e,- per molecule. Then , is related to e, by Eq. (5-17), which is known as theBoltzmann distribution. [Pg.201]

The above result show that the concentration dependaiice of the Intensity maps is purely a statistical mechanics effect. In order to illustrate this important conclusion, we calculate disordered state, at concentration c=, with the V s obtained at the composition PtsV (figure 4). 150 K above the transition temperature, we Indeed observe the experimentally observed splitting of the diffuse intensity maxima, with a saddle point at (100). [Pg.36]

We have employed the Bragg-Williams approximation (BWA) to obtain rough estimates of the ordering/segregation critical temperatures. It is well known that the BWA usually overestimates critical temperatures (approximately by 20 %) in comparison with the exact value obtained from Monte Carlo simulations, or by other highly accurate methods of statistical mechanics. This order of accuracy Is nevertheless sufficient for our present purposes. [Pg.41]

The form of the stochastic transfer function p x) is shown in figure 10.7. Notice that the steepness of the function near a - 0 depends entirely on T. Notice also that this form approaches that of a simple threshold function as T —> 0, so that the deterministic Hopfield net may be recovered by taking the zero temperature limit of the stochastic system. While there are a variety of different forms for p x) satisfying this desired limiting property, any of which could also have been chosen, this sigmoid function is convenient because it allows us to analyze the system with tools borrowed from statistical mechanics. [Pg.529]

Husimi, K., Proc. Phys.-Math. Soc. Japan 22, 264, "Some formal properties of the density matrix." Introduction of the concept of reduced density matrix. Statistical-mechanical treatment of the Hartree-Fock approximation at an arbitrary temperature and an alternative method of obtaining the reduced density matrices are discussed. [Pg.327]

To close this chapter we emphasize that Hie statistical mechanical definition of macroscopic parameters such as temperature and entropy are well designed to describe isentropic equilibrium systems, but are not immediately applicable to the discussion of transport processes where irreversible entropy increase is an essential feature. A macroscopic system through which heat is flowing does not possess a single tempera-... [Pg.482]

Values for the thermodynamic functions as a function of temperature for condensed phases are usually obtained from Third Law measurements. Values for ideal gases are usually calculated from the molecular parameters using the statistical mechanics procedures to be described in Chapter 10. In either... [Pg.192]

This volume also contains four appendices. The appendices give the mathematical foundation for the thermodynamic derivations (Appendix 1), describe the ITS-90 temperature scale (Appendix 2), describe equations of state for gases (Appendix 3), and summarize the relationships and data needed for calculating thermodynamic properties from statistical mechanics (Appendix 4). We believe that they will prove useful to students and practicing scientists alike. [Pg.687]


See other pages where Temperature statistical-mechanical is mentioned: [Pg.64]    [Pg.54]    [Pg.64]    [Pg.54]    [Pg.370]    [Pg.446]    [Pg.550]    [Pg.666]    [Pg.687]    [Pg.270]    [Pg.367]    [Pg.318]    [Pg.411]    [Pg.181]    [Pg.59]    [Pg.470]    [Pg.47]    [Pg.102]    [Pg.130]    [Pg.139]    [Pg.143]    [Pg.4]    [Pg.144]    [Pg.531]    [Pg.640]    [Pg.146]    [Pg.312]    [Pg.15]    [Pg.194]    [Pg.78]   
See also in sourсe #XX -- [ Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 , Pg.76 , Pg.77 , Pg.78 ]




SEARCH



© 2024 chempedia.info