Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature dependence thermodynamics parameters

Accurate modeling is only possible by the consideration of wavelength-dependent optical and temperature-dependent thermodynamic parameters and the correct application of the thermal accommodation coefficient which is dependent on the ambient particle conditions and is described in detail elsewhere (Schulz et al., 2006 Daun et al., 2007). Moreover, Michelsen (2003) suggested the inclusion of a nonthermal photodesorption mechanism for heat and mass loss, the sublimation of multiple cluster species from the surface, and the influence of annealing on absorption, emission, and sublimation. A more general form of the energy equation including in more detail mass transfer processes has been derived recently by Hiers (2008). For practical use, Equation (1) turns out to be of sufficient physical detail. [Pg.226]

Cholesteryl para-substituted benzoates give mesophases with transition temperatures and thermodynamic parameters which depend upon the para-substituent. " Crystal and mesophase structures of cholesteryl myristate appear to show some similarities in molecular packing. " X-Ray studies show that cholesteryl 17-bromoheptadecanoate crystals contain alternating regions with cholesterol and hydrocarbon-chain packing. ""... [Pg.287]

Phi-phi. If a reliable PvTx equation of state is available, then we may use the phi-phi method to compute gas solubilities. Thermodynamically, this is merely phi-phi applied to VLB and the general approach has been discussed in 10.1.1 and 12.1.1. But in practice, this is a relatively recent development because reliable equations of states have only recently been devised for supercritical solutes in subcritical solvents. When the phi-phi method is used, computed solubilities are found to be sensitive to the temperature dependence of parameters in the equation of state they are also sensitive to the mixing rules used for those parameters. In particular, when cubic equations are used, the temperature dependence and mixing rule for the parameter a must be chosen with care. However, we judge this to be a modeling problem, not a thermodynamic problem. [Pg.543]

Having substituted values of a number of parameters [5, 29] in the equation (10), we shall receive dependence of an effective constant of speed of hydrolysis of ether links on temperature and thermodynamic parameters of the media ... [Pg.103]

For the particular temperature-dependent thermodynamic properties, a number of special equations has been developed which are able to describe the various properties in the interesting temperature range, that is, from the triple point to the critical point for a liquid property and in an arbitrarily chosen temperature range (e.g., -200 to 1500 C) for a vapor property. All of them have a number of adjustable parameters that can be fitted to experimental data, usually in a way that the objective function F, the sum of squares of the relative deviations between calculated and experimental data, becomes a minimum ... [Pg.80]

The properties of butane and isobutane have been summarized ia Table 5 and iaclude physical, chemical, and thermodynamic constants, and temperature-dependent parameters. Graphs of several physical properties as functions of temperature have been pubUshed (17) and thermodynamic properties have been tabulated as functions of temperature (12). [Pg.401]

Cullinan presented an extension of Cussler s cluster diffusion the-oiy. His method accurately accounts for composition and temperature dependence of diffusivity. It is novel in that it contains no adjustable constants, and it relates transport properties and solution thermodynamics. This equation has been tested for six very different mixtures by Rollins and Knaebel, and it was found to agree remarkably well with data for most conditions, considering the absence of adjustable parameters. In the dilute region (of either A or B), there are systematic errors probably caused by the breakdown of certain implicit assumptions (that nevertheless appear to be generally vahd at higher concentrations). [Pg.599]

A more interesting possibility, one that has attracted much attention, is that the activation parameters may be temperature dependent. In Chapter 5 we saw that theoiy predicts that the preexponential factor contains the quantity T", where n = 5 according to collision theory, and n = 1 according to the transition state theory. In view of the uncertainty associated with estimation of the preexponential factor, it is not possible to distinguish between these theories on the basis of the observed temperature dependence, yet we have the possibility of a source of curvature. Nevertheless, the exponential term in the Arrhenius equation dominates the temperature behavior. From Eq. (6-4), we may examine this in terms either of or A//. By analogy with equilibrium thermodynamics, we write... [Pg.251]

Eigure 3.5 presents the dependence of A.S ° on temperature for chymotryp-sinogen denaturation at pH 3. A positive A.S ° indicates that the protein solution has become more disordered as the protein unfolds. Comparison of the value of 1.62 kj/mol K with the values of A.S ° in Table 3.1 shows that the present value (for chymotrypsinogen at 54.5°C) is quite large. The physical significance of the thermodynamic parameters for the unfolding of chymotrypsinogen becomes clear in the next section. [Pg.63]

Equilibrium vapor pressures were measured in this study by means of a mass spectrometer/target collection apparatus. Analysis of the temperature dependence of the pressure of each intermetallic yielded heats and entropies of sublimation. Combination of these measured values with corresponding parameters for sublimation of elemental Pu enabled calculation of thermodynamic properties of formation of each condensed phase. Previ ly reported results on the subornation of the PuRu phase and the Pu-Pt and Pu-Ru systems are correlated with current research on the PuOs and Pulr compounds. Thermodynamic properties determined for these Pu-intermetallics are compared to analogous parameters of other actinide compounds in order to establish bonding trends and to test theoretical predictions. [Pg.104]

The physical nature of the sulfate complexes formed by plutonium(III) and plutonium(IV) in 1 M acid 2 M ionic strength perchlorate media has been inferred from thermodynamic parameters for complexation reactions and acid dependence of stability constants. The stability constants of 1 1 and 1 2 complexes were determined by solvent extraction and ion-exchange techniques, and the thermodynamic parameters calculated from the temperature dependence of the stability constants. The data are consistent with the formation of complexes of the form PuSOi,(n-2)+ for the 1 1 complexes of both plutonium(III) and plutonium(IV). The second HSO4 ligand appears to be added without deprotonation in both systems to form complexes of the form PuSOifHSOit(n"3) +. ... [Pg.251]

Cationic polymerization of cyclic acetals generally involves equilibrium between monomer and polymer. The equilibrium nature of the cationic polymerization of 2 was ascertained by depolymerization experiments Methylene chloride solutions of the polymer ([P]0 = 1.76 and 1.71 base-mol/1) containing a catalytic amount of boron trifluoride etherate were allowed to stand for several days at 0 °C to give 2 which was in equilibrium with its polymer. The equilibrium concentrations ([M]e = 0.47 and 0.46 mol/1) were in excellent agreement with that found in the polymerization experiments under the same conditions. The thermodynamic parameters for the polymerization of 1 were evaluated from the temperature dependence of the equilibrium monomer concentrations between -20 and 30 °C. [Pg.54]

A major goal was to investigate the solid state structures of such compounds by single crystal X-ray diffraction. It was found that Lewis acid-base adducts R3M—ER3 show general structural trends, which allow estimations on the relative stability of the adducts. The experimental results were confirmed by computational calculations, giving even deeper insights into the structural parameters and the thermodynamic stability of simple Lewis acid-base adducts. In addition, their thermodynamic stability in solution was investigated by temperature-dependent NMR spectroscopy. [Pg.121]

Another simple approach assumes temperature-dependent AH and AS and a nonlinear dependence of log k on T (123, 124, 130). When this dependence is assumed in a particular form, a linear relation between AH and AS can arise for a given temperature interval. This condition is met, for example, when ACp = aT" (124, 213). Further theoretical derivatives of general validity have also been attempted besides the early work (20, 29-32), particularly the treatment of Riietschi (96) in the framework of statistical mechanics and of Thorn (125) in thermodynamics are to be mentioned. All of the too general derivations in their utmost consequences predict isokinetic behavior for any reaction series, and this prediction is clearly at variance with the facts. Only Riietschi s theory makes allowance for nonisokinetic behavior (96), and Thorn first attempted to define the reaction series in terms of monotonicity of AS and AH (125, 209). It follows further from pure thermodynamics that a qualitative compensation effect (not exactly a linear dependence) is to be expected either for constant volume or for constant pressure parameters in all cases, when the free energy changes only slightly (214). The reaction series would thus be defined by small differences in reactivity. However, any more definite prediction, whether the isokinetic relationship will hold or not, seems not to be feasible at present. [Pg.461]

This stipulation of the interaction parameter to be equal to 0.5 at the theta temperature is found to hold with values of Xh and Xs equal to 0.5 - x < 2.7 x lO-s, and this value tends to decrease with increasing temperature. The values of = 308.6 K were found from the temperature dependence of the interaction parameter for gelatin B. Naturally, determination of the correct theta temperature of a chosen polymer/solvent system has a great physic-chemical importance for polymer solutions thermodynamically. It is quite well known that the second viiial coefficient can also be evaluated from osmometry and light scattering measurements which consequently exhibits temperature dependence, finally yielding the theta temperature for the system under study. However, the evaluation of second virial... [Pg.107]

Mark-Houwink values confirm that for these conditions gelatin is behaves rod-hke conformation. Such of empirical equations can be relating the parameters of Mark-Houwink with T, which ultimately describe this type of thermodynamic parameters are relations between properties the solute with the solvent and temperature dependence. [Pg.110]

Roush, D. J., Gill, D. S., and Willson, R. C., Anion-exchange chromatographic behavior of recombinant rat cytochrome b5. Thermodynamic driving forces and temperature dependence of the stoichiometric displacement parameter Z, /. Chromatogr., 653, 207, 1993. [Pg.280]

No new absorption bands are observed in other cases, largely due to the fact that the strong absorptions of the aromatic donors obstruct the UV-spectral measurements. For the complex between CBr4 and TMPD, the quantitative analyses of the temperature and concentration-dependent absorptions of the new band at 380 nm afford the extinction coefficient of ct = 3.2 x 103 M 1 cm x, as well as the thermodynamic parameters for complex formation AH = - 4.5 kcalM x, AS = - 14 e.u., and Kda = 0.3 M x at 295 K. Such thermodynamic characteristics are similar to those of the dihalogen complexes of as well as those of other acceptors with aromatic donors. Similar results are also obtained for CBr4 associates with halide and thio-cyanide anions [5,53]. [Pg.152]

Streng, W. H. Tan, H. G. H., General treatment of pH solubility profiles of weak acids and bases, n. Evaluation of thermodynamic parameters from the temperature dependence of solubility profiles apphed to a zwitterionic compound, Int. J. Pharm. 25, 135-145 (1985). [Pg.277]

It is not the purpose of chemistry, but rather of statistical thermodynamics, to formulate a theory of the structure of water. Such a theory should be able to calculate the properties of water, especially with regard to their dependence on temperature. So far, no theory has been formulated whose equations do not contain adjustable parameters (up to eight in some theories). These include continuum and mixture theories. The continuum theory is based on the concept of a continuous change of the parameters of the water molecule with temperature. Recently, however, theories based on a model of a mixture have become more popular. It is assumed that liquid water is a mixture of structurally different species with various densities. With increasing temperature, there is a decrease in the number of low-density species, compensated by the usual thermal expansion of liquids, leading to the formation of the well-known maximum on the temperature dependence of the density of water (0.999973 g cm-3 at 3.98°C). [Pg.25]

The temperature stability of the complexes seems to be dependent on the molecular weight of the PEG chain, i.e., the larger the PEG the lower the temperature at which the complex dissociates. An important observation was that the complexation/decomplexation phenomenon was reversible by changing the temperature of the system. The positive values of the thermodynamic parameters as well as the experimental observations clearly indicate the important role of hydrophobic interactions in the stabilization of the PMAA/PEG complexes. Since PAA is considerably more hydrophilic than PMAA, hydrophobic interactions do not play an important role in stabilizing the PAA/PEG complexes. This is represented by the much... [Pg.93]

This means that two thermodynamic parameters can now vary freely while the system still remains in equilibrium, and the system is said to be bivariant. In this case, the composition becomes an important parameter and must be added to the partial pressure and temperature. Thus, the partial pressure over a nonstoichiometric oxide in a sealed tube will no longer depend solely upon the temperature but on the composition as well (Fig. 7.6) (see also Section 6.8.2). [Pg.314]

The Landau theory predicts the symmetry conditions necessary for a transition to be thermodynamically of second order. The order parameter must in this case vary continuously from 0 to 1. The presence of odd-order coefficients in the expansion gives rise to two values of the transitional Gibbs energy that satisfy the equilibrium conditions. This is not consistent with a continuous change in r and thus corresponds to first-order phase transitions. For this reason all odd-order coefficients must be zero. Furthermore, the sign of b must change from positive to negative at the transition temperature. It is customary to express the temperature dependence of b as a linear function of temperature ... [Pg.49]

The exp-6 model is not well suited to molecules with large dipole moments. To account for this, Ree9 used a temperature-dependent well depth e(T) in the exp-6 potential to model polar fluids and fluid phase separations. Fried and Howard have developed an effective cluster model for HF.33 The effective cluster model is valid for temperatures lower than the variable well-depth model, but it employs two more adjustable parameters than does the latter. Jones et al.34 have applied thermodynamic perturbation theory to... [Pg.164]


See other pages where Temperature dependence thermodynamics parameters is mentioned: [Pg.410]    [Pg.75]    [Pg.435]    [Pg.459]    [Pg.459]    [Pg.69]    [Pg.431]    [Pg.409]    [Pg.532]    [Pg.158]    [Pg.538]    [Pg.363]    [Pg.395]    [Pg.79]    [Pg.107]    [Pg.28]    [Pg.264]    [Pg.66]    [Pg.56]    [Pg.196]    [Pg.194]    [Pg.85]    [Pg.308]    [Pg.87]    [Pg.20]    [Pg.413]   


SEARCH



Dependent parameters

Parameter Dependence

Thermodynamic parameters

Thermodynamical parameters

Thermodynamics temperature dependence

Thermodynamics, parameters

© 2024 chempedia.info