Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tautomerism, example

Fast transient studies are largely focused on elementary kinetic processes in atoms and molecules, i.e., on unimolecular and bimolecular reactions with first and second order kinetics, respectively (although confonnational heterogeneity in macromolecules may lead to the observation of more complicated unimolecular kinetics). Examples of fast thennally activated unimolecular processes include dissociation reactions in molecules as simple as diatomics, and isomerization and tautomerization reactions in polyatomic molecules. A very rough estimate of the minimum time scale required for an elementary unimolecular reaction may be obtained from the Arrhenius expression for the reaction rate constant, k = A. The quantity /cg T//i from transition state theory provides... [Pg.2947]

The nitroparaffiiis in which the nitro group is attached to a primary or secondary carbon atom exist in tautomeric forms, for example ... [Pg.302]

Acetoacetic ester is the classical example of a tautomeric substance, which at room temperature exists as an equilibrium mixture of the kelo and enol forms containing approximately 93 per cent, of the keto form ... [Pg.475]

Space does not permit any further detailed discussion except for a brief account of two interesting subjects. The first is concerned with keto-enol tautomerism. The classical example is ethyl acetoacetate, which can exist in the keto form (I) and the enol form (II) ... [Pg.1147]

This reaction is a clear example of the importance of tautomeric equilibrium studies in this series since, to the extent that the starting thiazolone does not epimerize in the medium, asymmetric induction may be expected in this reaction (453, 455). [Pg.434]

Diosphenol [490-03-9] the main constituent of buchu leaves, is an example of a naturally occurring compound with tautomeric properties (286) ... [Pg.497]

Oxygen Substituents. The presence of oxygen or sulfur attached to the ring can affect the chemistry of those compounds through tautomerism. This phenomenon ia the pyridine series has been well studied and reviewed (38). An example of 2-pyridone—2-pyridinol tautomerism was shown ia equation 2, compound (16). [Pg.328]

Hydroxyisoquinolines. Hydroxy groups in the 5-, 6-, 7-, and 8-position show phenoHc reactions for example, the Bucherer reaction leads to the corresponding anainoisoquinolines. Other typical reactions include the Mannich condensation, azo-coupling reactions, and nitrosation. Both 0-methyl and /V-methyl derivatives are obtained from the methylation of 1-hydroxyisoquinoline, indicating that both tautomeric forms are present. Distillation of various hydroxy compounds, eg, 1- and 4-hydroxyisoquinoline, with zinc dust removes the oxygen. Treatment of 1-isoquinolinol with phosphoms tribromide yields 1-bromoisoquinoline [1532-71 -4] (178). [Pg.398]

In mordant dyes, phenols, naphthols, and enolizable carbonyl compounds, such as pyrazolones, are generally the couplers. As a rule, 2 1 metal complexes are formed ia the afterchroming process. A typical example of a mordant dye is Eriochrome Black T (18b) which is made from the important dyestuff iatermediate nitro-l,2,4-acid, 4-amiQO-3-hydroxy-7-nitro-l-naphthalenesulfonic acid [6259-63-8]. Eriochrome Red B [3618-63-1] (49) (Cl Mordant Red 7 Cl 18760) (1, 2,4-acid — l-phenyl-3-methyl-5-pyrazolone) is another example. The equiUbrium of the two tautomeric forms depends on the nature of the solvent. [Pg.437]

Photochromism Based on Tautomerism. Several substituted anils of saHcylaldehydes are photochromic but only in the crystalline state. The photochromic mechanism involves a proton transfer and geometric isomerization (21). An example of a photochromic anil is /V-sa1icylidene-2-ch1oToani1ine [3172-42-7] C H qCINO. [Pg.163]

For further details and examples of prototropic tautomerism in pyridazines and condensed pyridazines, see (63AHC(1)339, B-76MI21200). [Pg.5]

Examples of the remaining potential 3,4-dihydroxy heterocycles are presently restricted to furan and thiophene. Although the parent 3,4-dihydroxyfuran apparently exists as the dioxo tautomer (86), derivatives bearing 2-alkyl or 2,5-dialkyl substituents prefer the keto-enol structure (87) (71T3839, 73HCA1882). The thiophene analogues also prefer the tautomeric structure (87), except in the case of the 2,5-diethoxycarbonyl derivative which has the fully aromatic structure (88) (71T3839). [Pg.37]

In this method, photons of an energy well in excess of the ionization potential are directed onto a molecule. The photoelectron spectrum which results allows assessment of the energies of filled orbitals in the molecule, and thus provides a characterization of a molecule. Comparisons between photoelectron spectra of related compounds give structural information, for example, on the tautomeric structure of a compound by comparison of its spectrum with those of models of each of the fixed forms. [Pg.30]

Complex tautomerism for azoles with heteroatoms in the 1,2-positions occurs for pyrazoles which are not substituted on nitrogen. Scheme 10 shows the four important tautomeric structures (148)-(151) for 3-methylpyrazolin-5-one, and (152) and (153) as examples of other possible structures. A detailed investigation of this system disclosed that in aqueous solution (polar medium) the importance of the tautomers is (149) > (151) (150) or (148), whereas in cyclohexane solution (non-polar medium) (151) > (148) (149) or (150). [Pg.37]

Halogen atoms in the 2-position of imidazoles, thiazoles and oxazoles (542) undergo nucleophilic substitution reactions. The conditions required are more vigorous than those used, for example, for a- and y-halogenopyridines, but much less severe than those required for chlorobenzene. Thus in compounds of type (542 X = Cl, Br) the halogen atom can be replaced by the groups NHR, OR, SH and OH (in the last two instances, the products tautomerize see Sections 4.02.3.7 and 4.02.3.8.1). [Pg.104]

Small unsaturated rings are usually very reactive undergoing ring opening in a number of ways, and this characteristic has been utilized in heterocyclic synthesis. In their role as dienophiles or dipolarophiles, the initial cycloaddition is usually followed by a valence tautomerism resulting in a six-membered or larger ring system. Several examples exist, however, where this does not occur, and these are described below. [Pg.153]

A well-known example of non-prototropic tautomerism is that of azolides (acylotropy). The acyl group migrates between the different heteroatoms and the most stable isomer (annular or functional) is obtained after equilibration. In indazoles both isomers are formed, but 2-acyl derivatives readily isomerize to the 1-substituted isomer. The first order kinetics of this isomerization have been studied by NMR spectroscopy (74TL4421). The same publication described an experiment (Scheme 8) that demonstrated the intermolecular character of the process, which has been called a dissociation-recombination process. [Pg.212]

Hydrogen bonding plays a major role in pyrazolone tautomerism, and the formation of a chelate structure can shift the equilibrium towards the chelated form. Structures (135) and (136) are two representative examples of such stabilized tautomers. Structure (137) is a hypothetical example of stabilization of the NH tautomer. [Pg.214]

An example of non-aromatic tautomerism has already been quoted (Table 13, Section 4.04.1.3.3(ii)) the equilibrium between the two enamines (152a) and (152b) is solvent and temperature dependent (70BSF3147). [Pg.216]

In a neutral azole, the apparent rate of formation of an A-substituted derivative depends on the rate of reaction of a given tautomer and on the tautomeric equilibrium constant. For example, with a 3(5)-substituted pyrazole such as (199), which exists as a mixture of two tautomers (199a) and (199b) in equilibrium, the product composition [(200)]/[(201)] is a function of the rate constants Ha and fcs, as well as of the composition of the tautomeric mixture (Scheme 16) <76AHC(Si)l). [Pg.222]

Tautomerism has been discussed in Section 4.04.1.5.2. It concerns prototropic tautomerism and the decreasing order of stability is (hydrazone) >A (azo)> A (enehydrazine). The isomerization A -> A occurs via a A -pyrazoline (65BSF769). Pyrazolidones and amino-A -pyrazolines exist as such. The only example of non-prototropic tautomerism deals with the isomerization (403) —> (404) (74CJC3474). This intramolecular process is another example (Section 4.04.1.5) of the thermodynamic analogy between prototropy and metallotropy. [Pg.254]

Among many examples of the solvent effects on chemical equilibria and reactions, the solvent effect on tautomerization has been one of the most extensively studied. Experi-... [Pg.432]

Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977]. Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977].
In the genuine low-temperature chemical conversion, which implies the incoherent tunneling regime, the time dependence of the reactant and product concentrations is detected in one way or another. From these kinetic data the rate constant is inferred. An example of such a case is the important in biology tautomerization of free-base porphyrines (H2P) and phtalocyanins (H2PC), involving transfer of two hydrogen atoms between equivalent positions in the square formed by four N atoms inside a planar 16-member heterocycle (fig. 42). [Pg.105]

The same arguments can be applied to other energetically facile interconversions of two potential reactants. For example, many organic molecules undergo rapid proton shifts (tautomerism), and the chemical reactivity of the two isomers may be quite different It is not valid, however, to deduce the ratio of two tautomers on the basis of subsequent reactions that have activation energies greater than that of the tautomerism. Just as in the case of conformational isomerism, the ratio of products formed in subsequent reactions will not be controlled by the position of the facile equilibrium. [Pg.222]


See other pages where Tautomerism, example is mentioned: [Pg.438]    [Pg.147]    [Pg.438]    [Pg.147]    [Pg.166]    [Pg.591]    [Pg.613]    [Pg.247]    [Pg.98]    [Pg.232]    [Pg.234]    [Pg.27]    [Pg.62]    [Pg.65]    [Pg.77]    [Pg.78]    [Pg.89]    [Pg.90]    [Pg.181]    [Pg.270]    [Pg.306]    [Pg.30]    [Pg.195]    [Pg.211]    [Pg.11]    [Pg.67]    [Pg.10]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



© 2024 chempedia.info