Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tartaric acid reactions

Access to racemic thiazolidine-2-carboxylic acid (3-thiaproline, 12) is obtained by reacting cysteamine (49) with glyoxylic acid ester (Scheme 9), 165>182>1831 whilst the reaction of (R)-cysteine with glyoxylic acid 184 1851 leads to (2/ /S,5/ )-thiazolidine-2-carboxylic acid. 185 The diastereomers of thiazolidine-2-carboxylic add (12) are rapidly interconverting and therefore cannot be separated. 185 In the presence of (2R,3R)- and (2S,3S)-tartaric acid, reaction of cysteamine with glyoxylic acid leads to the enantiomerically pure (2/ )- and (2S)-thia-zolidine-2-carboxylic acid salts. 186 The acids undergo fast racemization in acetic acid. 186 ... [Pg.74]

Asymmetric synthesis of fi-lactams,2 The key reagent for a new asymmetric synthesis of /2-lactams is the chiral imine 1, prepared from (2S,3S)-tartaric acid. Reaction of 1 with an ester cnolate (2) provides a )3-lactam 3, the configuration of which... [Pg.322]

As stated earlier, resolution processes give a maximum yield of 50% of the desired enantiomer, but in practice it is usually less than 40%. The yield can be raised beyond 50% if the diastereomer that remains in solution can be made to undergo spontaneous epimerization. An example is the synthesis of dextropropoxyphene by asymmetric transformation of the diastereomeric salt formed from the Mannich reaction product using dibenzoyl-L-tartaric acid (reaction 9.3). [Pg.252]

Acetophenone similarly gives an oxime, CHjCCgHjlCtNOH, of m.p. 59° owing to its lower m.p. and its greater solubility in most liquids, it is not as suitable as the phenylhydrazone for characterising the ketone. Its chief use is for the preparation of 1-phenyl-ethylamine, CHjCCgHslCHNHj, which can be readily obtained by the reduction of the oxime or by the Leuckart reaction (p. 223), and which can then be resolved by d-tartaric acid and /-malic acid into optically active forms. The optically active amine is frequently used in turn for the resolution of racemic acids. [Pg.258]

A useful catalyst for asymmetric aldol additions is prepared in situ from mono-0> 2,6-diisopropoxybenzoyl)tartaric acid and BH3 -THF complex in propionitrile solution at 0 C. Aldol reactions of ketone enol silyl ethers with aldehydes were promoted by 20 mol % of this catalyst solution. The relative stereochemistry of the major adducts was assigned as Fischer- /ir o, and predominant /i -face attack of enol ethers at the aldehyde carbonyl carbon atom was found with the (/ ,/ ) nantiomer of the tartaric acid catalyst (K. Furuta, 1991). [Pg.61]

Several structures of the transition state have been proposed (I. D. Williams, 1984 K. A. Jorgensen, 1987 E.J. Corey, 1990 C S. Takano, 1991). They are compatible with most data, such as the observed stereoselectivity, NMR measuiements (M.O. Finn, 1983), and X-ray structures of titanium complexes with tartaric acid derivatives (I.D. Williams, 1984). The models, e. g., Jorgensen s and Corey s, are, however, not compatible with each other. One may predict that there is no single dominant Sharpless transition state (as has been found in the similar case of the Wittig reaction see p. 29f.). [Pg.124]

Make acid yields coumaUc acid when treated with fuming sulfuric acid (19). Similar treatment of malic acid in the presence of phenol and substituted phenols is a facile method of synthesi2ing coumarins that are substituted in the aromatic nucleus (20,21) (see Coumarin). Similar reactions take place with thiophenol and substituted thiophenols, yielding, among other compounds, a red dye (22) (see Dyes and dye intermediates). Oxidation of an aqueous solution of malic acid with hydrogen peroxide (qv) cataly2ed by ferrous ions yields oxalacetic acid (23). If this oxidation is performed in the presence of chromium, ferric, or titanium ions, or mixtures of these, the product is tartaric acid (24). Chlorals react with malic acid in the presence of sulfuric acid or other acidic catalysts to produce 4-ketodioxolones (25,26). [Pg.522]

The chemical reactions involved in tartaric acid production are formation of calcium tartrate from cmde potassium acid tartrate. [Pg.526]

Oxidation. Maleic and fumaric acids are oxidized in aqueous solution by ozone [10028-15-6] (qv) (85). Products of the reaction include glyoxyhc acid [298-12-4], oxalic acid [144-62-7], and formic acid [64-18-6], Catalytic oxidation of aqueous maleic acid occurs with hydrogen peroxide [7722-84-1] in the presence of sodium tungstate(VI) [13472-45-2] (86) and sodium molybdate(VI) [7631-95-0] (87). Both catalyst systems avoid formation of tartaric acid [133-37-9] and produce i j -epoxysuccinic acid [16533-72-5] at pH values above 5. The reaction of maleic anhydride and hydrogen peroxide in an inert solvent (methylene chloride [75-09-2]) gives permaleic acid [4565-24-6], HOOC—CH=CH—CO H (88) which is useful in Baeyer-ViUiger reactions. Both maleate and fumarate [142-42-7] are hydroxylated to tartaric acid using an osmium tetroxide [20816-12-0]/io 2LX.e [15454-31 -6] catalyst system (89). [Pg.452]

The copper complex is very stable at neutral pH, but it fades very rapidly in the presence of hydrogen ions. Other complex formers such as tartaric acid or citric acid and thiourea interfere with the reaction and, therefore, should not be included in mobile phases used for the separation of amino acids [3]. [Pg.246]

By a modified Bischler-Napieralsky reaction, 6 -nitrophenylaceto-jS-3 4-methylenedioxyphenylethylamide, resulting from the condensation of -3 4-methylenedioxyphenylethylamine with 2-nitrophenylacetyl chloride, was converted into 6 nitro-l-benzyl-6 7-methylenedioxy-3 4-dihydroisoquinoline. The methiodide of the latter was reduced with zinc and hydrochloric acid to 6 -amino-l-benzyl-2-methyl-6 7-methylenedioxy-1 2 3 4-tetrahydro/soquinoline dihydrochloride, which by the Pschorr ring-closure reaction, produced dZ-roemerine (IV, p. 317), m.p. 85-7°. By treatment in succession with d- and Z-tartaric acids, the dZ-base was resolved into Z- and tZ-forms. Synthetic Z-roemerine is dimorphic, m.p. 85-7° and 102°, and has [aju — 79-9° (EtOH), these constants being in good agreement with those of the natural base. [Pg.315]

Add calcium chloride and stir with a glass rod. A crystalline precipitate of calcium tartrate, C.,H40(,Cad-4H20, is formed u hich dissolves in acetic acid and caustic alkalis. Repeat the fniegoing test, but add a few drojts of acetic acid before the calcium chloride. There is no precipitate. Calcium sulphate also gives no precipitate with tartaric acid or neutial tartrates, ( compare reactions for OKalic acid, p. 100). [Pg.115]

The potassium (but not the sodium) salt is obtained by the obscure reaction of SO2 on aqueous thiosulfate. Aqueous solutions of the acid H2S30f, can then be obtained from K2S30f, by treatment with tartaric acid or perchloric acid. [Pg.717]

In 1989 Yamamoto et al. reported that the chiral (acyloxy)borane (CAB) complex 3 is effective in catalyzing the Diels-AIder reaction of a number of a,/ -unsaturated aldehydes [5]. The catalyst was prepared from monoacylated tartaric acid and bo-... [Pg.6]

A mixture of 10.0 g of 3-methylsulfinyl phenothiazine (MP 193° to 195°C), 6.1 g of finely powdered sodium hydroxide and 125 cc of toluene is boiled for 1 hour under reflux with a water separator on an oil bath kept at a temperature of 150°C, while the mixture is stirred. Without interrupting the boil a solution of 7.0 g of 2-(N-methvl-piperidyl-2 )-1-chloroethane (BP 84°C/10 mm Hg) in 10 cc of toluene is added dropwise in the course of 1 hour, after which boiling is continued for another 3 hours. When the reaction mixture has cooled it is first washed with 25 cc of water three times and then extracted with 75 cc of a 15% aqueous tartaric acid solution. The tartaric acid extract is shaken out with 25 cc... [Pg.952]

The base may be isolated as the tartrate as follows A portion of reaction mixture is added to a well stirred solution of tartaric acid in ethanol at 27°C. The mixture is stirred for two hours and the product recovered by filtration. The filter cake is washed with cold ethanol followed by ether and air-dried. MP 144°-147°C. [Pg.1328]

The corrosion of tin by nitric acid and its inhibition by n-alkylamines has been reportedThe action of perchloric acid on tin has been studied " and sulphuric acid corrosion inhibition by aniline, pyridine and their derivatives as well as sulphones, sulphoxides and sulphides described. Attack of tin by oxalic, citric and tartaric acids was found to be under the anodic control of the Sn salts in solution in oxygen free conditions . In a study of tin contaminated by up to 1200 ppm Sb, it was demonstrated that the modified surface chemistry catalysed the hydrogen evolution reaction in deaerated citric acid solution. [Pg.809]

A substance made from the tartaric acid found at the bottom of this wine vat catalyzes enantioselective reactions. [Pg.735]

Addition reactions to aldehydes in the presence of the tartaric acid derived chiral auxiliaries (.S ..S )-l,2,3,4-tetramethoxybutane (5), (S,.S)-2,3-dimethoxy-A%V,/V, A,, -tctramethyl-l,4-bu-tanediamine (6) and (5,5)-2,3-bis[2-(dimethylamino)ethoxy]-Af,yV,A. iV -tetramethyl-l,4-bu-tanediamine (7) have been studied in detail9" u. Again there was low enantioselection (generally 10-55% ee). [Pg.147]

Analogous results were obtained for enol ether bromination. The reaction of ring-substituted a-methoxy-styrenes (ref. 12) and ethoxyvinylethers (ref. 10), for example, leads to solvent-incorporated products in which only methanol attacks the carbon atom bearing the ether substituent. A nice application of these high regio-and chemoselectivities is found in the synthesis of optically active 2-alkylalkanoic acids (ref. 13). The key step of this asymmetric synthesis is the regioselective and chemoselective bromination of the enol ether 4 in which the chiral inductor is tartaric acid, one of the alcohol functions of which acts as an internal nucleophile (eqn. 2). [Pg.104]


See other pages where Tartaric acid reactions is mentioned: [Pg.515]    [Pg.323]    [Pg.515]    [Pg.323]    [Pg.331]    [Pg.202]    [Pg.478]    [Pg.289]    [Pg.527]    [Pg.311]    [Pg.25]    [Pg.230]    [Pg.536]    [Pg.10]    [Pg.289]    [Pg.473]    [Pg.50]    [Pg.7]    [Pg.36]    [Pg.119]    [Pg.939]    [Pg.1200]    [Pg.1280]    [Pg.1463]    [Pg.425]    [Pg.158]    [Pg.685]    [Pg.796]    [Pg.170]   
See also in sourсe #XX -- [ Pg.347 , Pg.352 ]




SEARCH



Tartar

Tartaric acid reaction conditions

Tartaric acid, monoacylcatalyst Diels-Alder reactions

Tartaric acid, reaction + glycerol

Tartaric acids

© 2024 chempedia.info