Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Target residue calculation

For residues (such as cleaning agents) that do not have a defined dose, some measure of toxicity, such as an acceptable daily intake (ADI), is used for residue limit purposes. If the subsequently manufactured product is an in vitro diagnostic (IVD), and has no defined dose, then some evaluation of the effects of target residues on the performance or stability of the IVD product should be performed. These non-dose factors are used only for the Li limit there are no changes for calculation of L2 and L3 limits. [Pg.1588]

The effects of the pattern density on CMP characteristics using 8-inch SKWl wafers from SKW Associates, which were specially designed for the characterization of pattern dependencies in ILD CMP, were investigated. The removal rates for various pattern densities and uniformities were evaluated and analyzed after CMP. The experimental result shows that the removal rate decreases linearly as the pattern density increases and these different removal rates for pattern densities cause bad WIDNU. It shows that a dummy pattern must be employed to minimize pattern density variation. However, the introduction of a dummy pattern may increase circuit capacitance, thus it is important to minimize the addition of dummy patterns. Therefore, to limit the removal rates across a die within reasonable values, we must determine what range of the pattern density is available in the die at the target residual thickness. Using a simple model that can take pattern density into consideration, the remaining oxide thickness was calculated and compared with the experimental data. [Pg.34]

Once it is assumed that the alignment meets all available experimental data, it can be started to calculate coordinates for the target residues. Although automated homology modeling methods exist, the yielded models tend to lack accuracy, esp>ecially in cases of low sequence identity (Dalton Jackson, 2007). [Pg.376]

The TGA system was a Perkin-Elmer TGS-2 thermobalance with System 4 controller. Sample mass was 2 to 4 mgs with a N2 flow of 30 cc/min. Samples were initially held at 110°C for 10 minutes to remove moisture and residual air, then heated at a rate of 150°C/min to the desired temperature set by the controller. TGA data from the initial four minutes once the target pyrolysis temperature was reached was not used to calculate rate constants in order to avoid temperature lag complications. Reaction temperature remained steady and was within 2°C of the desired temperature. The actual observed pyrolysis temperature was used to calculate activation parameters. The dimensionless "weight/mass" Me was calculated using Equation 1. Instead of calculating Mr by extrapolation of the isothermal plot to infinity, Mr was determined by heating each sample/additive to 550°C under N2. This method was used because cellulose TGA rates have been shown to follow Arrhenius plots (4,8,10-12,15,16,19,23,26,31). Thus, Mr at infinity should be the same regardless of the isothermal pyrolysis temperature. A few duplicate runs were made to insure that the results were reproducible and not affected by sample size and/or mass. The Me values were calculated at 4-minute intervals to give 14 data points per run. These values were then used to... [Pg.337]

To ensure compliance with the withdrawal period, an assay is needed to monitor total residues in the edible tissues. Because it is impractical to develop assays for each residue in each of the edible tissues, the concept of a marker residue and a target tissue is introduced. The marker residue is a selected analyte whose level in a particular tissue has a known relationship to the level of the total residue of toxicological concern in all edible tissues. Therefore, it can be taken as a measure of the total residue of interest in the target animal. The information obtained from studies of the depletion of the radiolabeled total residue can be used to calculate a level of the marker residue that must not be exceeded in a selected tissue (the target tissue) if the total residue of toxicological concern in the edible tissues of the target animal is not to exceed its safe concentration. [Pg.134]

To calculate the labeling of a molecule from a mass spectrometric measurement, the data have to be corrected for natural isotopes present in the analyzed ion of the target molecule. Hereby, the atoms of the analyte and of added deri-vatization residues have to be considered. Additionally, elements that form ad-... [Pg.44]

Recently Schulz et aland Fischer et al have had some difficulty in applying the CDW-EIS theory successfully for fully differential cross sections in fast ion-atom collisions at large perturbations. These ionization cross sections are expected to be sensitive to the quality of the target wave function and therefore accurate wave functions are needed to calculate these cross sections. Thus one purpose of this paper is to address this problem theoretically by re-examining the CDW-EIS model and the assumptions on which it is based. We will explore this by employing different potentials to represent the interaction between the ionized electron, projectile ion and residual target ion. For other recent work carried out on fully differential cross sections see and references therein. This discussion is presented in section 4. [Pg.311]

The objective of the Residue File is to allow the elaboration of MRLs taking into account the ADI calculated in the Safety File in conjunction with the pharmacokinetics, residues depletion data, and a knowledge of target tissues and marker residues. The individual MRLs in different tissues should be a function of the amount of the food items consumed, and should also reflect the kinetics of the depletion of the residues to be consistent with the established withdrawal periods. MRLs should be proposed in such a way that the total amount of residues ingested with 500 g meat or 500 g poultry or 300 g fish, plus 1500 g milk, plus 100 g egg, plus 20 g honey does not exceed the ADI. The EU uses the daily intake values presented in Table 11.5. After an MRL has been established for a... [Pg.350]

The United States uses food consumption data and food factors in conjunction with the ADI to calculate the tolerance of residues in edible tissues. The calculation starts with an estimate of the safe concentration of the total drug residues by dividing the ADI by food factors that reflect the contribution of the edible tissues to the daily diet. Following analysis of the depletion of the total residues from the edible tissues, a target tissue is selected for residue monitoring. The residue whose concentration is in known relationship to the total residues in the target tissue is selected as the marker residue. The tolerance is the concentration of the marker residue in the target tissue, which ensures that the total residues in each edible tissue are below their safe concentration. [Pg.415]

The MRL is the EU equivalent of the US tolerance. Since in addition to consumption figures the relative distribution of residues between edible tissues is considered in the calculation of the MRL, practical withdrawal periods can be set for products containing the active substances concerned. This is an important point that differentiates the approach used to set MRLs in the Europe from the approach used by the United States to set residue tolerances. At least two tissues, one on the carcass and one organ meat, have to be designated as target tissues. [Pg.415]


See other pages where Target residue calculation is mentioned: [Pg.342]    [Pg.3]    [Pg.163]    [Pg.1589]    [Pg.118]    [Pg.292]    [Pg.294]    [Pg.294]    [Pg.295]    [Pg.216]    [Pg.285]    [Pg.292]    [Pg.321]    [Pg.293]    [Pg.323]    [Pg.358]    [Pg.257]    [Pg.89]    [Pg.834]    [Pg.861]    [Pg.467]    [Pg.79]    [Pg.89]    [Pg.388]    [Pg.309]    [Pg.169]    [Pg.732]    [Pg.426]    [Pg.200]    [Pg.168]    [Pg.206]    [Pg.28]    [Pg.29]    [Pg.32]    [Pg.367]    [Pg.105]    [Pg.510]    [Pg.55]    [Pg.351]   
See also in sourсe #XX -- [ Pg.1589 ]




SEARCH



Target residue

© 2024 chempedia.info