Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic polymers polypropylene

A homopolymer of (R)-3-hydroxybutyrate (PHB) is the most common type of PHA that bacteria accumulate in nature and has been studied and characterized extensively by many researchers. Poly (P-hydroxybutyrate) (PHB) has a number of interesting characteristics and can be used in various ways similar to maity conventional synthetic plastics now in use. The properties of polyhydroxyalkanoates viz. PHB, PHV and comparison with synthetic polymer polypropylene (PP) have been described by Sasikala and Ramana (1996). [Pg.216]

Olefin fibers, also called polyolefin fibers, are defined as manufactured fibers in which the fiber-forming substance is a synthetic polymer of at least 85 wt % ethylene, propjiene, or other olefin units (1). Several olefin polymers are capable of forming fibers, but only polypropylene [9003-07-0] (PP) and, to a much lesser extent, polyethylene [9002-88-4] (PE) are of practical importance. Olefin polymers are hydrophobic and resistant to most solvents. These properties impart resistance to staining, but cause the polymers to be essentially undyeable in an unmodified form. [Pg.312]

Styrene—butadiene elastomers, emulsion and solution types combined, are reported to be the largest-volume synthetic mbber, with 28.7% of the world consumption of all synthetic mbber in 1994 (38). This percentage has decreased steadily since 1973 when SBR s market share was 57% (39). The decline has been attributed to the switch to radial tires (longer milage) and the growth of other synthetic polymers, such as polyethylene, polypropylene, polyester, and polystyrene. Since 1985, production of SBR has been flat (Table 3). [Pg.499]

The discovery and development of polypropylene, the one genuinely new large tonnage thermoplastics material developed since World War II, forms part of what is arguably the most important episode in the history of polymer science. For many years it had been recognised that natural polymers were far more regular in their structure than synthetic polymers. Whilst there had been some improvement in controlling molecular architecture, the man-made materials, relative to the natural materials, were structurally crude. [Pg.8]

Synthetic large molecules are made by joining together thousands of small molecular units known as monomers. The process of joining the molecules is called polymerisation and the number of these units in the long molecule is known as the degree of polymerisation. The names of many polymers consist of the name of the monomer with the suffix poly-. For example, the polymers polypropylene and polystryene are produced from propylene and styrene respectively. Names, and symbols for common polymers are given in Appendix F. [Pg.2]

Many high molecular weight synthetic polymers, such as polyethylene and polypropylene, have a large percentage of their molecules in the crystalline state. Prior to dissolution, these polymers must usually be heated almost to their melting points to break up the crystalline forces. Orthodichlorobenzene (ODCB) is a typical mobile phase for these polymers at 150°C. The accuracy and stability of the Zorbax PSM columns under such harsh conditions make them ideal for these analyses (Fig. 3.8). [Pg.86]

Geotextiles are available as mats, textiles, webs, nets, grids, and sheets. When retention of the contained material is desired synthetic polymers such as polypropylenes, polyesters, nylons, PEs, and PVCs are used because they resist rapid degradation. When only shortterm retention is needed natural materials such as cotton are used. Geotextiles are not always made from fibers, but include film materials such as PE and polypropylene sheets used to retain moisture but retard weed growth in gardens. [Pg.607]

Cases are now almost exclusively fabricated by injection moulding using synthetic polymers which have replaced the bitumen and hard rubber widely used in the past. Polypropylene has excellent mechanical and... [Pg.151]

Phillips catalysts for linear polyethylene and polypropylene and the graft copolymerizations for impact polystyrene and ABS are even younger and have not yet spread into the less industrialized countries of world. The production of polyolefins, poly (vinyl chloride), and styrene resins on a worldwide basis as well as of all synthetic polymers is shown in Figure 3. A comparison of the U.S. production in Figure 1 and in Figure 3 demonstrates the effect of age and dissemination of technology. It shows that relatively more poly (vinyl chloride) but less polyolefins and styrene resins are produced worldwide than in this country. [Pg.9]

Polymers are large molecules (macromolecules) that consist of one or two small molecules (monomers) joined to each other in long, often highly branched, chains in a process called polymerization. Both natural and synthetic polymers exist. Some examples of natural polymers are starch, cellulose, chitin (the material of which shells are made), nucleic acids, and proteins. Synthetic polymers, the subject of this chapter, include polyethylene, polypropylene, polystyrene, polyesters, polycarbonates, and polyurethanes. In their raw, unprocessed form, synthetic polymers are sometimes referred to as resins. Polymers are formed in two general ways by addition or by condensation. [Pg.151]

Two main criteria for the membrane selection are pore size and material. As peroxidases usually have sizes in the range of 10-80 kDa, ultrafiltration membranes with a molecular cutoff between 1 and 50 kDa are the most adequate to prevent enzyme leakage [99]. The materials commonly applied to ultrafiltration membranes are synthetic polymers (nylon, polypropylene, polyamide, polysulfone, cellulose and ceramic materials [101]. The adequate material depends on a great number of variables. When enzyme is immobilized into the matrix, this must be prepared at mild conditions to preserve the enzymatic activity. In the case of enzyme immobilization onto the membrane, this should be activated with the reactive groups necessary to interact with the functional groups of the enzyme. If an extractive system is considered, the selection of the hydrophilicity or hydro-phobicity of the membrane should be performed according to the features of reactants, products, and solvents. In any case, the membrane should not interfere with the catalytic integrity of the enzyme. [Pg.260]

Only the part of the radiation that is actually absorbed by the material can become chemically active. Most pure, organic synthetic polymers (polyethylene, polypropylene,... [Pg.779]

In fewer than 150 years, we have become literally surrounded by synthetic polymers. We wear clothes of nylon and polyester, we walk on polypropylene carpets, we drive cars with ABS plastic fenders and synthetic rubber tires, and we use artificial hearts and other organs made of silicone polymers. Our pens and computers, our toys and our televisions are made largely of plastics. [Pg.1222]

Microfiltration units can be configured as plate and frame flat sheet equipment, hollow fiber bundles, or spiral wound modules. The membranes are typically made of synthetic polymers such as Polyethersulfone (PES), Polyamide, Polypropylene, or cellulosic mats. Alternate materials include ceramics, stainless steel, and carbon. Each of these come with its own set of advantages and disadvantages. For instance, ceramic membranes are often recommended for the filtration of larger particles such as cells because of the wider lumen of the channels. However, it has been shown that spiral wound units can also be used for this purpose, provided appropriate spacers are used. [Pg.1332]

Synthetic polymers based on polyesters and co-polyesters are some of the most expensive biopolymers. Feedstock is expensive compared with biopolymers based on renewable resources and the production process is more complex and costly. Synthetic types can cost up to three times the price of commodity polymers such as polyethylene and polypropylene. [Pg.89]


See other pages where Synthetic polymers polypropylene is mentioned: [Pg.212]    [Pg.45]    [Pg.212]    [Pg.45]    [Pg.495]    [Pg.317]    [Pg.578]    [Pg.108]    [Pg.232]    [Pg.23]    [Pg.196]    [Pg.301]    [Pg.215]    [Pg.368]    [Pg.110]    [Pg.748]    [Pg.97]    [Pg.267]    [Pg.201]    [Pg.224]    [Pg.173]    [Pg.63]    [Pg.495]    [Pg.73]    [Pg.234]    [Pg.24]    [Pg.81]    [Pg.73]    [Pg.33]    [Pg.359]    [Pg.89]    [Pg.70]    [Pg.187]    [Pg.26]    [Pg.214]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



Polymer Synthetic polymers

Polymers polypropylene polymer

Polypropylene polymers

Synthetic polymers

© 2024 chempedia.info