Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis adsorbents

The technique of low-energy electron diffraction, LEED (Section VIII-2D), has provided a considerable amount of information about the manner in which a chemisorbed layer rearranges itself. Somotjai [13] has summarized LEED results for a number of systems. Some examples are collected in Fig. XVlII-1. Figure XVIII-la shows how N atoms are arranged on a Fe(KX)) surface [14] (relevant to ammonia synthesis) even H atoms may be located, as in Fig. XVIII-Ih [15]. Figure XVIII-Ic illustrates how the structure of the adsorbed layer, or adlayer, can vary wiA exposure [16].f There may be a series of structures, as with NO on Ru(lOTO) [17] and HCl on Cu(llO) [18]. Surface structures of... [Pg.686]

The applications of this simple measure of surface adsorbate coverage have been quite widespread and diverse. It has been possible, for example, to measure adsorption isothemis in many systems. From these measurements, one may obtain important infomiation such as the adsorption free energy, A G° = -RTln(K ) [21]. One can also monitor tire kinetics of adsorption and desorption to obtain rates. In conjunction with temperature-dependent data, one may frirther infer activation energies and pre-exponential factors [73, 74]. Knowledge of such kinetic parameters is useful for teclmological applications, such as semiconductor growth and synthesis of chemical compounds [75]. Second-order nonlinear optics may also play a role in the investigation of physical kinetics, such as the rates and mechanisms of transport processes across interfaces [76]. [Pg.1289]

Because the synthesis reactions are exothermic with a net decrease in molar volume, equiUbrium conversions of the carbon oxides to methanol by reactions 1 and 2 are favored by high pressure and low temperature, as shown for the indicated reformed natural gas composition in Figure 1. The mechanism of methanol synthesis on the copper—zinc—alumina catalyst was elucidated as recentiy as 1990 (7). For a pure H2—CO mixture, carbon monoxide is adsorbed on the copper surface where it is hydrogenated to methanol. When CO2 is added to the reacting mixture, the copper surface becomes partially covered by adsorbed oxygen by the reaction C02 CO + O (ads). This results in a change in mechanism where CO reacts with the adsorbed oxygen to form CO2, which becomes the primary source of carbon for methanol. [Pg.275]

The mechanism of the synthesis reaction remains unclear. Both a molecular mechanism and an atomic mechanism have been proposed. Strong support has been gathered for the atomic mechanism through measurements of adsorbed nitrogen atom concentrations on the surface of model working catalysts where dissociative N2 chemisorption is the rate-determining step (17). The likely mechanism, where (ad) indicates surface-adsorbed species, is as follows ... [Pg.84]

Adsorptivity. Gaseous ozone can be adsorbed by porous soHd substrates such as siHca gel and is often used in this form in organic synthesis... [Pg.490]

Noncrystalline Silicas. The noncrystalline forms of silica iaclude bulk vitreous silica and a variety of other amorphous types, which are of substantial commercial importance (see SiLiCA, AMORPHOUS SILICA SiLiCA, VITREOUS SILICA). A review discussiag the occurrence, synthesis, properties, and apphcations of the various forms of silica adsorbents is available (71). [Pg.476]

Sucrose acrylate derivatives can be converted into polymers and hydrogels that can be used as flocculants, water adsorbents, bioimplantables, and dmg dehvery devices (42). Sucrose ethers have appHcations as surfactants and surface coatings, and as feedstocks for synthesis of polyurethane foams and... [Pg.5]

The mesoporous ordered silicas of different type represent the new generation of materials with unique properties. The discovery of these materials became basis for creation of new catalysts, adsorbents, sensors and supporter for other molecules. The most important way of the modifying physical and chemical properties of mesopurous silicas consist in organic components incorporation on the silica surface as part of the silicate walls or their insertion within channels of the mesopores. This ensured that interest in synthesis and study of functionalized mesoporous materials shai ply grew. In spite of it, these materials are studied insufficiently. [Pg.41]

It has been seen that this resin has also some important advantages over the other resins in the literature like high total ion exchange capacity, easy synthesis, lower cost, simple regeneration. Furthermore, very good sepai ations were obtained using a concentration gradient of elution. In these elutions, very low concentrations of sodium trimetaphosphate were used. As a result, the resin synthesized can be used as an adsorbent for the effective removal of Pb, Cd, Co, Cu, Fe, Ni, Zn and Cr from aqueous solutions. [Pg.289]

The diffusion, location and interactions of guests in zeolite frameworks has been studied by in-situ Raman spectroscopy and Raman microscopy. For example, the location and orientation of crown ethers used as templates in the synthesis of faujasite polymorphs has been studied in the framework they helped to form [4.297]. Polarized Raman spectra of p-nitroaniline molecules adsorbed in the channels of AIPO4-5 molecular sieves revealed their physical state and orientation - molecules within the channels formed either a phase of head-to-tail chains similar to that in the solid crystalline substance, with a characteristic 0J3 band at 1282 cm , or a second phase, which is characterized by a similarly strong band around 1295 cm . This second phase consisted of weakly interacting molecules in a pseudo-quinonoid state similar to that of molten p-nitroaniline [4.298]. [Pg.262]

Ventura, S. C., Hum, G.P. and Narang, S.C., Novel Strategies for the Synthesis of Methane Adsorbents with Controlled Porosity and High Surface Area", Gas Research Institute Report GRl-93/0018, 1993... [Pg.301]

Porous silicas coated with N-VP — AC copolymer may be used as an activated support for the immobilization of the biospecific ligands [50] or for the synthesis of hydrophobic adsorbents [54]. [Pg.154]

Most studies of the effect of alkalis on the adsorption of gases on catalyst surfaces refer to CO, NO, C02, 02, H2 and N2, due to the importance of these adsorbates for numerous industrial catalytic processes (e.g. N2 adsorption in NH3 synthesis, NO reduction by CO). Thus emphasis will be given on the interaction of these molecules with alkali-modified surfaces, especially transition metal surfaces, aiming to the identification of common characteristics and general trends. [Pg.35]

The reactant is adsorbed on the catalyst s surface. As a reactant molecule attaches to the surface of the catalyst, its bonds are weakened and the reaction can proceed more quickly because the bonds are more easily broken (Fig. 13.36). One important step in the reaction mechanism of the Haber process for the synthesis of ammonia is the adsorption of N2 molecules on the iron catalyst and the weakening of the strong N=N triple bond. [Pg.687]

Partially successful attempts towards chiral electrochemical synthesis have involved chiral supporting electrolytes chiral solvents and chiral adsorbates, mostly alkaloids With the latter method enantiometric excess values >40% have... [Pg.72]

One of the m jor attractions in the metal-atom synthesis of dimer and cluster species is the ability to isolate highly unsaturated species, M Lm, that may then be considered to be models for chemisorption of the ligand, L, on either a bare, or a supported, metal surface (,100). It is quite informative to compare the spectral properties of these finite cluster-complexes to those of the corresponding, adsorbed surface-layers (100), in an effort to test localized-bonding aspects of chemisorption, and for deciphering UPS data and vibrational-energy-loss data for the chemisorbed state. At times, the similarities are quite striking. [Pg.115]

An efficient biocatalytic method for the production of amides in multigrara scale has been developed for the synthesis of a pyrrole-amide, which is an intermediate for the synthesis of the dipeptidyl peptidase IV that regulates plasma levels of the insulinotropic proglucagon. CALB catalyzes the ammonolysis of the ester with ammonium carbamate as source of ammonia (Scheme 7.8) [22]. The use of ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol by-products. [Pg.176]

The vibrations of molecular bonds provide insight into bonding and stmcture. This information can be obtained by infrared spectroscopy (IRS), laser Raman spectroscopy, or electron energy loss spectroscopy (EELS). IRS and EELS have provided a wealth of data about the stmcture of catalysts and the bonding of adsorbates. IRS has also been used under reaction conditions to follow the dynamics of adsorbed reactants, intermediates, and products. Raman spectroscopy has provided exciting information about the precursors involved in the synthesis of catalysts and the stmcture of adsorbates present on catalyst and electrode surfaces. [Pg.184]

Thermal treatments can be applied to modify the properties of a material, for example, dealumination and optimization of crystalHne phases. These techniques do not require oxidants. Oxidative thermal treatments are generally employed to activate molecular sieves, by removing the organic templates employed during synthesis. This is one of the key steps when preparing porous catalysts or adsorbents. In air-atmosphere calcination, the templates are typically combusted between 400... [Pg.121]

In the near future, the possible synthesis of nanotubes with solid-gas potential will be more favorable to adsorption. The effect of hydrogen overpressure on the stability of adsorbed Ha needs to be verified in the near future. The high-purity nanotube produced by laser vaporization, catalytic decomposition, or other techniques should be investigated. It is noteworthy that the synthesis of the SWNT with defined diameters and distances between the walls is difficult to perform at present, but future synthesis routes will allow more... [Pg.205]


See other pages where Synthesis adsorbents is mentioned: [Pg.464]    [Pg.464]    [Pg.464]    [Pg.464]    [Pg.320]    [Pg.280]    [Pg.11]    [Pg.499]    [Pg.446]    [Pg.456]    [Pg.172]    [Pg.175]    [Pg.1541]    [Pg.136]    [Pg.44]    [Pg.388]    [Pg.160]    [Pg.220]    [Pg.149]    [Pg.170]    [Pg.153]    [Pg.115]    [Pg.325]    [Pg.48]    [Pg.567]    [Pg.75]    [Pg.42]    [Pg.208]    [Pg.119]    [Pg.48]    [Pg.73]    [Pg.76]   
See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Formate, adsorbed, methanol synthesis

Synthesis Methods of Catalyst Adsorbents, Ion Exchangers, and Permeable Materials

© 2024 chempedia.info