Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Susceptibility elastic

It was proved experimentally, that expressions (4) and (5) are effective only for hyperelastic state of cross-linked polymers. To describe change of strain electromagnetic anisotropy in all cross-linked polymers physical states will consider strain electromagnetic susceptibility s C (MPa" ) and electromagnetic susceptibility elastic coefficient s relaxation operators. Suppose that they are submitted by such appropriateness, by which equilibrium properties in equation (5)... [Pg.51]

For description strain electromagnetic aiusotropy of densely polymer meshes in all their physical states include strain electromagnetic susceptibility relaxation operators C (MPa ), electromagnetic susceptibility elastic and shear pliability J(MPa ) coef- cients and consider that they are interconnected as appropriate equihbrium properties in Equation (3)... [Pg.70]

For densely cross-hnked polymers with spatial homogeneous topological structure mathematical formalization of relaxation operator J was identiCbd by authors [4]. From Equation (4) fohows that electromagnetic susceptibility elastic coefCfcient s relaxation spectrum is equal modulus of rigidity relaxation spectrum. Therefore operator can be produced as ... [Pg.70]

Liquid crystals as anisotropic fluids exhibit a wide range of complex physical phenomena that can only be understood if the appropriate macroscopic tensor properties are fully characterized. This involves a determination of the number of independent components of the property tensor, and their measurement. Thus a knowledge of refractive indices, electric permittivity, electrical conductivity, magnetic susceptibilities, elastic and viscosity tensors are necessary to describe the switching of liquid crystal films by electric and magnetic fields. Development of new and improved materials relies on the design of liquid crystals having particular macroscopic tensor properties, and the optimum performance of liquid crystal devices is often only possible for materials with carefully specified optical and electrical properties. [Pg.227]

The presence of a few atomic percent of oxygen in tantalum increases electrical resistivity, hardness, tensile strength, and modulus of elasticity, but decreases elongation and reduction of area, magnetic susceptibility, and corrosion resistance to HF . [Pg.895]

Since it measures the susceptibility of materials to plastic deformation (as contrasted with elastic deformation), hardness is very important for diagnosing the mechanical state of a material, in particular toughness. Purely elastic materials are brittle. Plasticity, by blunting cracks and other defects, allows metals and, to some extent ceramics, to tolerate small flaws and thereby become malleable and tough. [Pg.4]

The structure factor S(q as defined in Eq. (54) in terms of the Ising pseudospins Si, in the framework of the first Bom approximation describes elastic scattering of X-rays, neutrons, or electrons, from the adsorbed layer. SCq) is particularly interesting, since in the thermodynamic limit it allows to estimate both the order parameter amplitude tj/, the order parameter susceptibility X4, and correlati length since for q near the superstructure Bragg reflection q we have (k = q— q%)... [Pg.130]

According to the model, a perturbation at one site is transmitted to all the other sites, but the key point is that the propagation occurs via all the other molecules as a collective process as if all the molecules were connected by a network of springs. It can be seen that the model stresses the concept, already discussed above, that chemical processes at high pressure cannot be simply considered mono- or bimolecular processes. The response function X representing the collective excitations of molecules in the lattice may be viewed as an effective mechanical susceptibility of a reaction cavity subjected to the mechanical perturbation produced by a chemical reaction. It can be related to measurable properties such as elastic constants, phonon frequencies, and Debye-Waller factors and therefore can in principle be obtained from the knowledge of the crystal structure of the system of interest. A perturbation of chemical nature introduced at one site in the crystal (product molecules of a reactive process, ionized or excited host molecules, etc.) acts on all the surrounding molecules with a distribution of forces in the reaction cavity that can be described as a chemical pressure. [Pg.168]

It is most important to know in this connection the compressibility of the substances concerned, at various temperatures, and in both the liquid and the crystalline state, with its dependent constants such as change of. melting-point with pressure, and effect of pressure upon solubility. Other important data are the existence of new pol3miorphic forms of substances the effect of pressure upon rigidity and its related elastic moduli the effect of pressure upon diathermancy, thermal conductivity, specific heat capacity, and magnetic susceptibility and the effect of pressure in modif dng equilibrium in homogeneous as well as heterogeneous systems. [Pg.8]

Bright, silvery-white metal face-centered cubic crystal structure (a = 0.5582 nm) at ordinary temperatures, transforming to body-centered cubic form (a= 0.4407) at 430°C density 1.54 g/cm at 20°C hardness 2 Mohs, 17 Brinnel (500 kg load) melts at 851°C vaporizes at 1,482°C electrical resistivity 3.43 and 4.60 microhm-cm at 0° and 20°C, respectively modulus of elasticity 3-4x10 psi mass magnetic susceptibility -i-1.10x10 cgs surface tension 255 dynes/cm brick-red color when introduced to flame (flame test) standard reduction potential E° = -2.87V... [Pg.157]

Occurs as a close-packed hexagonal alpha-form and a hody-centered cubic beta modification melting point 2,233°C vaporizes at 4,602°C electrical resistivity 35.5 microhm-cm at 20°C magnetic susceptibility 0.42xlCL6 emu/g at 25°C thermal neutron absorption cross section 105 barns/atom work function 3.5 eV modulus of elasticity 20x10 psi tensile strength 58,000 psi at 25°C insoluble in water, dilute mineral acids and nitric acid at all concentrations soluble in hydrofluoric acid, concentrated sulfuric acid and aqua regia. [Pg.330]

Metallic appearance in massive form, black to metallic color in powdered state or in electrodeposited form hexagonal crystal system density 20.53 g/cm3 hardness (Brinell) 250 melts at 3,180°C vaporizes at 5,627°C (estimated) vapor pressure 4.6x10- torr at 2,500°C electrical resistivity 19.14 microhm -cm modulus of elasticity 67x10 psi at 20°C specific magnetic susceptibility 0.369x10 thermal neutron absorption cross section 86 barns/atom superconductivity transition temperature 1.7°K insoluble in water and hydrochloric acid soluble in dilute nitric acid and hydrogen peroxide slightly soluble in sulfuric acid. [Pg.789]

Gray, heavy, and very hard metal malleable and ductile body-centered cubic lattice structure the density of the metal 16.65 g/cm at 20°C and that of powder 14.40 g/cm melts at 2,996°C vaporizes around 5,458°C electrical resistivity 13.1 microhm-cm at 25°C modulus of elasticity 27x10 psi Poisson s ratio 0.35 magnetic susceptibility 0.849x10 cgs units at 25°C insoluble in water, alcohol and practically all acids soluble in hydrofluoric acid... [Pg.908]

A bright white metal soft and ductile body-centered cubic structure index of refraction 3.03 density 5.96 g/cm melts at 1,910°C vaporizes at 3,407°C electrical resistivity, 18.1 microhm-cm at 0°C and 20.1 microhm-cm at 25°C magnetic susceptibility 1.4x10 cgs units modulus of elasticity 18-19x10 psi shear modulus 6.73xl0 psi Poisson s ratio 0.36 thermal neutron absorption cross section 5 barns/atom insoluble in water, dilute sulfuric acid, and hydrochloric acid at all concentrations soluble in nitric acid, aqua regia, and concentrated sulfuric acid insoluble in alkalies. [Pg.962]

Most of the experimental results on CJTE can be explained on the basis of molecular field theory. This is because the interaction between the electron strain and elastic strain is fairly long-range. Employing simple molecular field theory, expressions have been derived for the order parameter, transverse susceptibility, vibronic states, specific heat, and elastic constants. A detailed discussion of the theory and its applications may be found in the excellent review by Gehring Gehring (1975). In Fig. 4.23 various possible situations of different degrees of complexity that can arise in JT systems are presented. [Pg.196]

The consistency of Napalm gel is variable and depends on many factors. However, 2-4% of Napalm gives a definitely stringy gel whereas 10-12% gives a very elastic gel which is almost solid. Napalm, while satisfactory as a thickener, is hygroscopic and also susceptible to oxidation by atmospheric oxygen resulting in a thickened gasoline with poor characteristics. In the presence of moisture, the soap may hydrolyze as shown in Equation 5.24 ... [Pg.380]

Equations (6) and (7) express these relationships. are the elastic compliance constants OC are the linear thermal expansion coefficients 4 and d jj,are the direct and converse piezoelectric strain coefficients, respectively Pk are the pyroelectric coefficients and X are the dielectric susceptibility constants. The superscript a on Pk, Pk, and %ki indicates that these quantities are defined under the conditions of constant stress. If is taken to be the independent variable, then O and are the dependent quantities ... [Pg.200]


See other pages where Susceptibility elastic is mentioned: [Pg.368]    [Pg.368]    [Pg.70]    [Pg.368]    [Pg.368]    [Pg.70]    [Pg.320]    [Pg.144]    [Pg.1362]    [Pg.27]    [Pg.148]    [Pg.479]    [Pg.89]    [Pg.31]    [Pg.1280]    [Pg.391]    [Pg.273]    [Pg.84]    [Pg.403]    [Pg.165]    [Pg.38]    [Pg.56]    [Pg.120]    [Pg.139]    [Pg.701]    [Pg.230]    [Pg.123]    [Pg.418]    [Pg.690]    [Pg.381]    [Pg.241]    [Pg.253]    [Pg.260]    [Pg.254]    [Pg.445]    [Pg.70]   
See also in sourсe #XX -- [ Pg.265 ]

See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Electromagnetic susceptibility’s equilibrium elastic coefficient

© 2024 chempedia.info