Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant concentration, influencing

The influence of the presence of alcohols on the CMC is also well known. In 1943 Miles and Shedlovsky [117] studied the effect of dodecanol on the surface tension of solutions of sodium dodecyl sulfate detecting a significant decrease of the surface tension and a displacement of the CMC toward lower surfactant concentrations. Schwuger studied the influence of different alcohols, such as hexanol, octanol, and decanol, on the surface tension of sodium hexa-decyl sulfate [118]. The effect of dodecyl alcohol on the surface tension, CMC, and adsorption behavior of sodium dodecyl sulfate was studied in detail by Batina et al. [119]. [Pg.250]

The phase behavior of a-ester sulfonates has been studied in detail with methyl laurate and methyl palmitate [58]. In both cases, at higher temperatures, as the surfactant concentration increases, there is a transition from an isotropic solution to a hexagonal liquid crystalline phase and finally, at high surfactant concentrations, to a lamellar liquid crystal (Fig. 4). The crystal/liquid-crys-tal phase transition occurs at even higher temperatures as the chain length increases. On the other hand, chain length has practically no influence on the... [Pg.477]

The physicochemical characterization of a colloidal carrier is necessary because important characteristics, such as particle size, hydrophobicity, and surface charge, determine the biodistribution after administration [129-132]. Preparation conditions, such as the pH of the polymerization medium, monomer concentration, and surfactant concentration, can influence the physicochemical characteristics of the particles [60, 62, 64]. It is, therefore, essential to perform a comprehensive physicochemical characterization of nanoparticles, which has been reviewed by Magenheim and Benita [133]. [Pg.8]

At low flow velocity of the dispersed phase, the interfacial tension does not influence the droplet diameter but it affects the time-scale parameters for droplet formation [35-37] the detachment time becomes shorter at high interfacial tension (low surfactant concentration) [38]. [Pg.8]

Case I (see Fig. 2.17) corresponds to the situation such that the emulsion is initially stabilized with SDS at 8 10 mold (CMC). The repulsive force as a function of distance between the ferrofluid droplets, stabilized with SDS alone is referred as 0% PVA. Then, PVA-Vac is introduced at different concentrations varying from 0.002 to 0.5 wt%. After each addition, the emulsion is incubated for 48 h to reach equilibrium. It can be seen that the force profiles remain almost the same as in the case of 0% PVA. As the surfactant concentration is equal to CMC, the expected decay length is 3.4 nm. The experimental value of the decay length obtained from the force profile, 2.9 nm (solid line), is in good agreement with the predicted value. Thus, if the emulsion is preadsorbed with surfactant molecules, the introduction of polymer does not influence the force profile significantly. [Pg.75]

Extraction of Surfactant. The influence of surfactant on the physical properties of the fiber require its removal prior to the establishment of the reverse osmosis rejection membrane. Surfactant is removed in a pressure extraction apparatus by the recirculation of hot aqueous alcohol. Surfactant is removed to concentrations less than 2% on the weight of dry fiber. [Pg.368]

Surfactant concentrations in polluted natural water bodies interfere with the self-purification process in several ways. First, certain detergents such as ABS are refractory or difficult to biodegrade and even toxic or inhibitory to microorganisms, and influence the BOD exhibited by organic pollution in surface waters. On the other hand, readily biodegradable detergents could impose an extreme short-term burden on the self-purification capacity of a water course, possibly introducing anaerobic conditions. [Pg.310]

Surfactant concentrations also exert a negative influence on the bio-oxidation of certain substances, as evidenced in studies with even readily biodegradable substances [7]. It should be noted that this protection of substances from bio-oxidation is only temporary and it slowly reduces until its virtual disappearance in about a week for most substances. This phenomenon serves to retard the self-purification process in organically polluted rivers, even in the presence of high concentrations of dissolved oxygen. [Pg.311]

It is noted that the molecular interaction parameter described by Eq. 52 of the improved model is a function of the surfactant concentration. Surprisingly, the dependence is rather significant (Eig. 9) and has been neglected in the conventional theories that use as a fitting parameter independent of the surfactant concentration. Obviously, the resultant force acting in the inner Helmholtz plane of the double layer is attractive and strongly influences the adsorption of the surfactants and binding of the counterions. Note that surface potential f s is the contribution due to the adsorption only, while the experimentally measured surface potential also includes the surface potential of the solvent (water). The effect of the electrical potential of the solvent on adsorption is included in the adsorption constants Ki and K2. [Pg.50]

Many investigations have been undertaken regarding the effect of the water concentration in the microemulsion on the catalytic behaviour of enzymes. The surfactant concentration of the microemulsion defines the size of the internal interface but it often has no measurable influence on the enzyme kinetics. On the other hand, the physical properties of the water located inside the reverse micelles differ from those of bulk water, and the difference becomes progressively smaller as the water concentration, expressed in the w -value, increases. [Pg.198]

The addition of an alkyl alcohol to the aqueous solution of an ionic surfactant greatly influences the surface activity of the surfactant. The critical micelle concentration (cmc) of the surfactant becomes lower in presence of alkyl alcohol, and the surface tension of the aqueous solution at cmc reaches a much lower value (1-4). [Pg.172]

High molecular weight monodisperse polystyrene latexes have been prepared by this method [158]. A number of factors were found to influence the size and dispersity of the particles. The size decreased with increasing surfactant concentration and decreasing internal phase volume, and a more monodisperse latex... [Pg.202]

Figure 8.6 Comparison of the influence of non-ionic Ci2E6 (hexaoxyethyl-ene ft-dodecyl ether) or anionic SDS (sodium dodecyl sulfate) on adsorbed amount of p-lactoglobulin at the air-water interface (0.1 wt% protein, pH = 6, ionic strength = 0.02 M, 25 °C) as determined by neutron reflectivity measurements. Protein surface concentration is plotted against the aqueous phase surfactant concentration ( ) Ci2E6 ( ) SDS. Reproduced from Dickinson (2001) with permission. Figure 8.6 Comparison of the influence of non-ionic Ci2E6 (hexaoxyethyl-ene ft-dodecyl ether) or anionic SDS (sodium dodecyl sulfate) on adsorbed amount of p-lactoglobulin at the air-water interface (0.1 wt% protein, pH = 6, ionic strength = 0.02 M, 25 °C) as determined by neutron reflectivity measurements. Protein surface concentration is plotted against the aqueous phase surfactant concentration ( ) Ci2E6 ( ) SDS. Reproduced from Dickinson (2001) with permission.
In Section 3.2 it was shown that surfactants can influence the magnitude of Kp. To use equation (3) to simulate changes in Kp, the following information is required 1) the aqueous surfactant concentration in the CFSTR as a function of time 2) the sorbed phase surfactant concentration in each of the NK sites 3) the magnitudes of Kmn and Kmc for each surfactant and, 4) the magnitude of Ks. Unfortunately, the required information to incorporate equation (3) into the distributed-rate model was not determined for this study. As a result, the influence of the surfactants on the distribution coefficient was not considered. [Pg.230]

Critical micelle concentrations can be determined by measuring any micelle-influenced physical property as a function of surfactant concentration. In practice, surface tension, electrical conductivity and dye solubilisation measurements (see Figure 4.13 and page 90) are the most popular. The choice of physical property will slightly influence the measured c.m.c., as will the procedure adopted to determine the point of discontinuity. [Pg.85]

When surfactants concentrate in an adsorbed monolayer at a surface the interfacial film may provide a stabilizing influence in thin films and foams since they can both lower interfadal tension and increase the interfacial viscosity. The latter provides a mechanical resistance to film thinning and rupture. [Pg.78]


See other pages where Surfactant concentration, influencing is mentioned: [Pg.78]    [Pg.78]    [Pg.142]    [Pg.1880]    [Pg.1881]    [Pg.160]    [Pg.655]    [Pg.249]    [Pg.63]    [Pg.63]    [Pg.63]    [Pg.379]    [Pg.147]    [Pg.286]    [Pg.10]    [Pg.107]    [Pg.136]    [Pg.12]    [Pg.232]    [Pg.664]    [Pg.5]    [Pg.16]    [Pg.67]    [Pg.182]    [Pg.54]    [Pg.135]    [Pg.174]    [Pg.137]    [Pg.497]    [Pg.28]    [Pg.363]    [Pg.443]    [Pg.276]    [Pg.140]    [Pg.367]    [Pg.127]   


SEARCH



Surfactant concentration

Surfactant concentration, influencing factors

Surfactants concentrated

© 2024 chempedia.info