Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfaces crystal faces

Surface oxidation can modify the surface groups on diamond surfaces [47,48], as well as the surface conductivity. Surface groups generated on diamond may depend on the type of surface crystal face [49] (Fig. 8.7). For example, the ideal (lOO) diamond surface has two chemical bonds for a single carbon atom in the first surface layer, and thus carbonyl and bridging ether groups... [Pg.162]

Fig. 8.7. The expected oxygen-containing sturface functional groups on diamond depend on the surface crystal face. Fig. 8.7. The expected oxygen-containing sturface functional groups on diamond depend on the surface crystal face.
Studies have been made on the rate of growth of oxide films on different crystal faces of a metal using ellipsometric methods. The rate was indeed different for (100), (101), (110), and (311) faces of copper [162] moreover, the film on a (311) surface was anisotropic in that its apparent thickness varied with the angle of rotation about the film normal. [Pg.283]

Diamond behaves somewhat differently in that n is low in air, about 0.1. It is dependent, however, on which crystal face is involved, and rises severalfold in vacuum (after heating) [1,2,25]. The behavior of sapphire is similar [24]. Diamond surfaces, incidentally, can have an oxide layer. Naturally occurring ones may be hydrophilic or hydrophobic, depending on whether they are found in formations exposed to air and water. The relation between surface wettability and friction seems not to have been studied. [Pg.440]

Certain materials, most notably semiconductors, can be mechanically cleaved along a low-mdex crystal plane in situ in a UFIV chamber to produce an ordered surface without contamination. This is done using a sharp blade to slice tire sample along its preferred cleavage direction. For example. Si cleaves along the (111) plane, while III-V semiconductors cleave along the (110) plane. Note that the atomic structure of a cleaved surface is not necessarily the same as that of the same crystal face following treatment by IBA. [Pg.304]

One of the main uses of these wet cells is to investigate surface electrochemistry [94, 95]. In these experiments, a single-crystal surface is prepared by UFIV teclmiqiies and then transferred into an electrochemical cell. An electrochemical reaction is then run and characterized using cyclic voltaimnetry, with the sample itself being one of the electrodes. In order to be sure that the electrochemical measurements all involved the same crystal face, for some experiments a single-crystal cube was actually oriented and polished on all six sides Following surface modification by electrochemistry, the sample is returned to UFIV for... [Pg.314]

A fonn of anisotropic etching that is of some importance is that of orientation-dependent etching, where one particular crystal face is etched at a faster rate than another crystal face. A connnonly used orientation-dependent wet etch for silicon surfaces is a mixture of KOH in water and isopropanol. At approximately 350 K, this etchant has an etch rate of 0.6 pm min for the Si(lOO) plane, 0.1 pm min for the Si(l 10) plane and 0.006 pm miiG for the Si(l 11) plane [24]. These different etch rates can be exploited to yield anisotropically etched surfaces. [Pg.932]

The work function (p is the energy necessary to just remove an electron from the metal surface in thermoelectric or photoelectric emission. Values are dependent upon the experimental technique (vacua of 10 or torr, clean surfaces, and surface conditions including the crystal face identification). [Pg.355]

The state of the surface is now best considered in terms of distribution of site energies, each of the minima of the kind indicated in Fig. 1.7 being regarded as an adsorption site. The distribution function is defined as the number of sites for which the interaction potential lies between and (rpo + d o)> various forms of this function have been proposed from time to time. One might expect the form ofto fio derivable from measurements of the change in the heat of adsorption with the amount adsorbed. In practice the situation is complicated by the interaction of the adsorbed molecules with each other to an extent depending on their mean distance of separation, and also by the fact that the exact proportion of the different crystal faces exposed is usually unknown. It is rarely possible, therefore, to formulate the distribution function for a given solid except very approximately. [Pg.20]

Surface Finish. As well as influencing the rate of metal removal, electrolytes also affect the quality of surface finish obtained in ECM. Depending on the metal being machined, some electrolytes leave an etched finish. This finish results from the nonspecular reflection of light from crystal faces electrochemicaHy dissolved at different rates. Sodium chloride electrolyte tends to produce a kind of etched, matte finish when used for steels and nickel aHoys. A typical surface roughness average, Ra is about 1 ]lni. [Pg.308]

Acoustic Wave Sensors. Another emerging physical transduction technique involves the use of acoustic waves to detect the accumulation of species in or on a chemically sensitive film. This technique originated with the use of quartz resonators excited into thickness-shear resonance to monitor vacuum deposition of metals (11). The device is operated in an oscillator configuration. Changes in resonant frequency are simply related to the areal mass density accumulated on the crystal face. These sensors, often referred to as quartz crystal microbalances (QCMs), have been coated with chemically sensitive films to produce gas and vapor detectors (12), and have been operated in solution as Hquid-phase microbalances (13). A dual QCM that has one smooth surface and one textured surface can be used to measure both the density and viscosity of many Hquids in real time (14). [Pg.391]

It is emphasized that the delta L law does not apply when similar crystals are given preferential treatment based on size. It fails also when surface defects or dislocations significantly alter the growth rate of a crystal face. Nevertheless, it is a reasonably accurate generahzation for a surprising number of industrial cases. When it is, it is important because it simphfies the mathematical treatment in modeling real crystallizers and is useful in predicting crystal-size distribution in many types of industrial crystallization equipment. [Pg.1658]

The mesomorphous phase, also called an intermediate phase or a mesophase, is formed by molecules occurring in surface layers of the crystallites. It can be assumed that the mesophase is made up largely by regularly adjacent reentry folds. However, it cannot be excluded that the mesophase is also composed of some irregular chain folds, which are characterized by a long length and run near the crystal face in the direction perpendicular to the microfibril axis. [Pg.843]

In recent years there is a growing interest in the study of vibrational properties of both clean and adsorbate covered surfaces of metals. For several years two complementary experimental methods have been used to measure the dispersion relations of surface phonons on different crystal faces. These are the scattering of thermal helium beams" and the high-resolution electron-energy-loss-spectroscopy. ... [Pg.151]

In uniform corrosion the superficial or geometrical area of the metal is used to evaluate both the anodic and cathodic current density, although it might appear to be more logical to take half of that area. However, surfaces are seldom smooth and the true surface area may be twice to three times that of the geometrical area (a cleaved crystal face or an electropolished single crystal would have a true surface area that approximates to its superficial area). It follows, therefore, that the true current density is smaller than the superficial current density, but whether the area used for calculating /, and... [Pg.82]

The lanthanum fluoride crystal is a conductor for fluoride ions which being small can move through the crystal from one lattice defect to another, and equilibrium is established between the crystal face inside the electrode and the internal solution. Likewise, when the electrode is placed in a solution containing fluoride ions, equilibrium is established at the external surface of the crystal. In general, the fluoride ion activities at the two faces of the crystal are different and so a potential is established, and since the conditions at the internal face are constant, the resultant potential is proportional to the fluoride ion activity of the test solution. [Pg.560]

There have been many instances of examination of the effect of additive product on the initiation of nucleation and growth processes. In early work on the dehydration of crystalline hydrates, reaction was initiated on all surfaces by rubbing with the anhydrous material [400]. An interesting application of the opposite effect was used by Franklin and Flanagan [62] to inhibit reaction at selected crystal faces of uranyl nitrate hexa-hydrate by coating with an impermeable material. In other reactions, the product does not so readily interact with reactant surfaces, e.g. nickel metal (having oxidized boundaries) does not detectably catalyze the decomposition of nickel formate [222],... [Pg.36]

The main problem in the analysis of E vs. 0 plots is that the two quantities are usually measured independently on different samples. It may happen that the surface structure differs somewhat so that for the sample on which E is measured is different from that of the sample used in UHV experiments. This is especially the case with polycrystalline surfaces, whose structural reproducibility is occasional, but it is also the case with well-defined crystal faces if reconstruction phenomena are possible.60 The problem persists also in the absence ofreconstruction since the concentration and/or distribution of surface defects may be differ-... [Pg.20]

It is clear from Eq. (27) that owing to the crystal face specificity of 0, Eaao is expected to vary with the crystallographic orientation as well. Moreover, since the interfacial term X results from interfacial molecular interactions, it must be face-specific also. For a well-defined metal surface, Eq. (27) becomes... [Pg.21]

While from a structural point of view metal/solution and metal/vac-uum interfaces are qualitatively comparable even if quantitatively dissimilar, in the presence of ionic adsorbates the comparability is more difficult and is possible only if specific conditions are met.33 This is sketched in Fig. 7. A UHV metal surface with ions adsorbed on it is electrically neutral because of a counter-charge on the metal phase. These conditions cannot be compared with the condition of a = 0 in an electrochemical cell, but with the conditions in which the adsorbed charge is balanced by an equal and opposite charge on the metal surface, i.e., the condition of zero diffuse-layer charge. This is a further complication in comparing electrochemical and UHV conditions and has been pointed out in the case of Br adsorption on Ag single-crystal faces.88... [Pg.25]

In situ Fourier transform infrared and in situ infrared reflection spectroscopies have been used to study the electrical double layer structure and adsorption of various species at low-index single-crystal faces of Au, Pt, and other electrodes.206"210 It has been shown that if the ions in the solution have vibrational bands, it is possible to relate their excess density to the experimentally observed surface. [Pg.41]

Figure 9. Theoretical C,E curves (1, 2, 3) for single-crystal faces and (4) for a model polycrystalline surface calculated by the superposition of the C,E curves at E= const [Eq. (49)] with = 02 = = 1/3 1. (a) Faces with strong hydrophilicity and (b, c) faces with... Figure 9. Theoretical C,E curves (1, 2, 3) for single-crystal faces and (4) for a model polycrystalline surface calculated by the superposition of the C,E curves at E= const [Eq. (49)] with = 02 = = 1/3 1. (a) Faces with strong hydrophilicity and (b, c) faces with...
The idea in these papers67,223,224 was to identify the potential of the capacitance minimum in dilute electrolyte solutions with the actual value of Ea=o (i.e., <7ge0m( min) = Ofor the whole surface) and to obtain the value of R as the inverse slope of the Parsons-Zobel plot at min.72 Extrapolation of Cwom vs- to Cgg0m = 0 provides the inner-layer capacitance in the / C geom, and not C ea as assumed in several papers.67,68,223,224 In the absence of ion-specific adsorption and for ideally smooth surfaces, these plots are expected to be linear with unit slope. However, data for Hg and single-crystal face electrodes have shown that the test is somewhat more complicated.63,74,219,247-249 More specifically,247,248 PZ plots for Hg/... [Pg.46]


See other pages where Surfaces crystal faces is mentioned: [Pg.108]    [Pg.299]    [Pg.730]    [Pg.938]    [Pg.945]    [Pg.1780]    [Pg.18]    [Pg.190]    [Pg.383]    [Pg.181]    [Pg.343]    [Pg.345]    [Pg.146]    [Pg.146]    [Pg.15]    [Pg.164]    [Pg.408]    [Pg.811]    [Pg.388]    [Pg.60]    [Pg.120]    [Pg.121]    [Pg.21]    [Pg.48]    [Pg.49]    [Pg.54]    [Pg.72]    [Pg.75]   
See also in sourсe #XX -- [ Pg.168 ]




SEARCH



Crystal faces

Surface microtopography of crystal faces

© 2024 chempedia.info