Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfaces atom-molecule interaction

It is due to the already significant surface atom-molecule interaction present in the case of ammonia and water before reaction, when the molecules adsorb strongly through their respective molecular lone-pair orbitals. [Pg.24]

The van der Waals attraction arises from tlie interaction between instantaneous charge fluctuations m the molecule and surface. The molecule interacts with the surface as a whole. In contrast the repulsive forces are more short-range, localized to just a few surface atoms. The repulsion is, therefore, not homogeneous but depends on the point of impact in the surface plane, that is, the surface is corrugated. [Pg.901]

The coefficients Co, nnd C2 (denoted as mq, ai, and aj in Ref. 33) are influenced by various molecular properties of the solvent and an ion, including their electron-donating or accepting abilities. Hence, these coefficients are specific to the ion. Nevertheless, they may be considered as common to a family of ions such as the polyanions whose surface atoms, directly interacting with solvents, are oxygens. This is the case for hydrated cations or anions whose surfaces are composed of some water molecules that interact with outer water molecules in the W phase or with organic solvents in the O phase. [Pg.55]

Because first principles knowledge of the dependence of V is generally poor, simple models of the lattice coupling and its consequences for dynamics have played an important role historically. A particularly good discussion of energy transfer to surfaces based on a simple model of atom/molecules interacting with a ID lattice chain is in Ref. [45]. Results from a few simple models are presented below. [Pg.159]

Figure 1.7 The generalization of laser chemistry. Top panel laser-mediated gas-phase reaction middle panel laser-mediated reaction of a molecule trapped in a (cluster) solvent cage bottom panel laser-mediated reaction of an adsorbed molecule with a surface atom/molecule (laser interacts with adsorbed molecule or the surface)... Figure 1.7 The generalization of laser chemistry. Top panel laser-mediated gas-phase reaction middle panel laser-mediated reaction of a molecule trapped in a (cluster) solvent cage bottom panel laser-mediated reaction of an adsorbed molecule with a surface atom/molecule (laser interacts with adsorbed molecule or the surface)...
Note that the van der Waals forces tliat hold a physisorbed molecule to a surface exist for all atoms and molecules interacting with a surface. The physisorption energy is usually insignificant if the particle is attached to the surface by a much stronger chemisorption bond, as discussed below. Often, however, just before a molecule fonus a strong chemical bond to a surface, it exists in a physisorbed precursor state for a short period of time, as discussed below in section AL7.3.3. [Pg.294]

There are many other experiments in which surface atoms have been purposely moved, removed or chemically modified with a scanning probe tip. For example, atoms on a surface have been induced to move via interaction with the large electric field associated with an STM tip [78]. A scaiming force microscope has been used to create three-dimensional nanostructures by pushing adsorbed particles with the tip [79]. In addition, the electrons that are tunnelling from an STM tip to the sample can be used as sources of electrons for stimulated desorption [80]. The tuimelling electrons have also been used to promote dissociation of adsorbed O2 molecules on metal or semiconductor surfaces [81, 82]. [Pg.311]

Computational solid-state physics and chemistry are vibrant areas of research. The all-electron methods for high-accuracy electronic stnicture calculations mentioned in section B3.2.3.2 are in active development, and with PAW, an efficient new all-electron method has recently been introduced. Ever more powerfiil computers enable more detailed predictions on systems of increasing size. At the same time, new, more complex materials require methods that are able to describe their large unit cells and diverse atomic make-up. Here, the new orbital-free DFT method may lead the way. More powerful teclmiques are also necessary for the accurate treatment of surfaces and their interaction with atoms and, possibly complex, molecules. Combined with recent progress in embedding theory, these developments make possible increasingly sophisticated predictions of the quantum structural properties of solids and solid surfaces. [Pg.2228]

The origin of a torsional barrier can be studied best in simple cases like ethane. Here, rotation about the central carbon-carbon bond results in three staggered and three eclipsed stationary points on the potential energy surface, at least when symmetry considerations are not taken into account. Quantum mechanically, the barrier of rotation is explained by anti-bonding interactions between the hydrogens attached to different carbon atoms. These interactions are small when the conformation of ethane is staggered, and reach a maximum value when the molecule approaches an eclipsed geometry. [Pg.343]

Molecular mechanical force fields use the equations of classical mechanics to describe the potential energy surfaces and physical properties of molecules. A molecule is described as a collection of atoms that interact with each other by simple analytical functions. This description is called a force field. One component of a force field is the energy arising from compression and stretching a bond. [Pg.21]

Thermal ionization. Takes place when an atom or molecule interacts with a heated surface or is in a gaseous environment at high temperatures. Examples of the latter include a capillary arc plasma, a microwave plasma, or an inductively coupled plasma. [Pg.439]

When a gas comes in contact with a solid surface, under suitable conditions of temperature and pressure, the concentration of the gas (the adsorbate) is always found to be greater near the surface (the adsorbent) than in the bulk of the gas phase. This process is known as adsorption. In all solids, the surface atoms are influenced by unbalanced attractive forces normal to the surface plane adsorption of gas molecules at the interface partially restores the balance of forces. Adsorption is spontaneous and is accompanied by a decrease in the free energy of the system. In the gas phase the adsorbate has three degrees of freedom in the adsorbed phase it has only two. This decrease in entropy means that the adsorption process is always exothermic. Adsorption may be either physical or chemical in nature. In the former, the process is dominated by molecular interaction forces, e.g., van der Waals and dispersion forces. The formation of the physically adsorbed layer is analogous to the condensation of a vapor into a liquid in fret, the heat of adsorption for this process is similar to that of liquefoction. [Pg.736]

The technique of INS is probably the least used of those described here, because of experimental difficulties, but it is also one of the physically most interesting. Ions of He" of a chosen low energy in the range 5-10 eV approach a metal surface and within an interaction distance of a fraction of a nanometer form ion-atom pairs with the nearest surface atoms. The excited quasi molecule so formed can de-excite by Auger neutralization. If unfilled levels in the ion fall outside the range of filled levels of the solid, as for He", an Auger process can occur in which an electron from the va-... [Pg.83]

Recently, many experiments have been performed on the structure and dynamics of liquids in porous glasses [175-190]. These studies are difficult to interpret because of the inhomogeneity of the sample. Simulations of water in a cylindrical cavity inside a block of hydrophilic Vycor glass have recently been performed [24,191,192] to facilitate the analysis of experimental results. Water molecules interact with Vycor atoms, using an empirical potential model which consists of (12-6) Lennard-Jones and Coulomb interactions. All atoms in the Vycor block are immobile. For details see Ref. 191. We have simulated samples at room temperature, which are filled with water to between 19 and 96 percent of the maximum possible amount. Because of the hydrophilicity of the glass, water molecules cover the surface already in nearly empty pores no molecules are found in the pore center in this case, although the density distribution is rather wide. When the amount of water increases, the center of the pore fills. Only in the case of 96 percent filling, a continuous aqueous phase without a cavity in the center of the pore is observed. [Pg.373]

Since the idea that all matters are composed of atoms and molecules is widely accepted, it has been a long intention to understand friction in terms of atomic or molecular interactions. One of the models proposed by Tomlinson in 1929 [12], known as the independent oscillator model, is shown in Fig. 13, in which a spring-oscillator system translates over a corrugating potential. Each oscillator, standing for a surface atom, is connected to the solid substrate via a spring of stiffness k, and the amplitude of the potential corrugation is. ... [Pg.172]

In addition, the calculations also provide evidence for differences in the electronic structures Cu weakens the Si-Si bond between adjacent surface and sub-surface atoms to a larger extent than does Ag. Thus, Cu promotes the Si-Si bond-breaking without blocking access to the surface whereas Ag has a smaller electronic effect and blocks the Si surface from a direct interaction with methylchloride molecules. [Pg.63]

The similarity of the results obtained for finite elusters and the infinite slab allows to eonclude in favour of the validity of the eluster model of adequate size (6 or 8 molybdenum atoms). In addition to the chemisorption of organic molecules on solid surfaces which is generally considered as a localized phenomenon, the interaction between molybdenum oxide and an adsorbate can also be represented by a loeal eomplex formed by a finite eluster and the adsorbed molecule. Indeed, the study of the evolution of the electronic properties as a funetion of the cluster size shows that, for a eluster eontaining 6 or 8 molybdenum atoms, most of the electronic properties converge towards limit values. This eonvergence is sensitive to the direction of the cluster growth. On the other hand, the electronic properties of the (001), (010) and (100) faces are not identieal, the type of surface atoms being different these results allow to predict that the characteristics of the chemisorption step will depend on the particular face on which it takes place. [Pg.438]


See other pages where Surfaces atom-molecule interaction is mentioned: [Pg.358]    [Pg.358]    [Pg.186]    [Pg.252]    [Pg.402]    [Pg.399]    [Pg.143]    [Pg.139]    [Pg.32]    [Pg.274]    [Pg.703]    [Pg.901]    [Pg.956]    [Pg.272]    [Pg.181]    [Pg.352]    [Pg.245]    [Pg.241]    [Pg.286]    [Pg.348]    [Pg.15]    [Pg.161]    [Pg.10]    [Pg.48]    [Pg.26]    [Pg.5]    [Pg.254]    [Pg.175]    [Pg.226]    [Pg.318]    [Pg.7]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Atom-Surface Interaction

Atomic interactions

Interacting Surface

Interactions molecule-surface

Molecule interaction

Molecules atomizing

Molecules atoms

Surface atoms

Surface molecules

© 2024 chempedia.info