Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface thermal activation

Although most reconnaissance applications are related to military applications, thermal imagers continue to find uses in weather reconnaissance, location and monitoring of volcanic activity, location and tracking of natural thermal currents (the Gulf Stream) as well as man-made thermal effluents from power generation facilities, and even the location and tracking of schools of fish by the associated sea surface thermal activity. [Pg.119]

The second class of atomic manipulations, the perpendicular processes, involves transfer of an adsorbate atom or molecule from the STM tip to the surface or vice versa. The tip is moved toward the surface until the adsorption potential wells on the tip and the surface coalesce, with the result that the adsorbate, which was previously bound either to the tip or the surface, may now be considered to be bound to both. For successful transfer, one of the adsorbate bonds (either with the tip or with the surface, depending on the desired direction of transfer) must be broken. The fate of the adsorbate depends on the nature of its interaction with the tip and the surface, and the materials of the tip and surface. Directional adatom transfer is possible with the apphcation of suitable junction biases. Also, thermally-activated field evaporation of positive or negative ions over the Schottky barrier formed by lowering the potential energy outside a conductor (either the surface or the tip) by the apphcation of an electric field is possible. FIectromigration, the migration of minority elements (ie, impurities, defects) through the bulk soHd under the influence of current flow, is another process by which an atom may be moved between the surface and the tip of an STM. [Pg.204]

The reaction of thiosulfate with silver haUde crystals to form adsorbed sulfide on the grain surfaces is activated thermally. If the reaction is allowed... [Pg.447]

The guarded hot-plate method can be modified to perform dry and wet heat transfer testing (sweating skin model). Some plates contain simulated sweat glands and use a pumping mechanism to deUver water to the plate surface. Thermal comfort properties that can be deterrnined from this test are do, permeabihty index (/ ), and comfort limits. PermeabiUty index indicates moisture—heat permeabiUty through the fabric on a scale of 0 (completely impermeable) to 1 (completely permeable). This parameter indicates the effect of skin moisture on heat loss. Comfort limits are the predicted metaboHc activity levels that may be sustained while maintaining body thermal comfort in the test environment. [Pg.461]

The attack of most glasses in water and acid is diffusion controlled and the thickness of the porous layer formed on the glass surface consequently depends on the square root of the time. There is ample evidence that the diffusion of alkali ions and basic oxides is thermally activated, suggesting that diffusion occurs either through small pores or through a compact body. The reacted zone is porous and can be further modified by attack and dissolution, if alkali is still present, or by further polymerisation. Consolidation of the structure generally requires thermal treatment. [Pg.880]

The dependence of friction on sliding velocity is more complicated. Apparent stick-slip motions between SAM covered mica surfaces were observed at the low velocity region, which would disappear when the sliding velocity excesses a certain threshold [35]. In AFM experiments when the tip scanned over the monolayers at low speeds, friction force was reported to increase with the logarithm of the velocity, which is similar to that observed when the tip scans on smooth substrates. This is interpreted in terms of thermal activation that results in depinning of interfacial atoms in case that the potential barrier becomes small [36]. [Pg.89]

EB radiation-cured PVC film surface induces a big improvement in tensile strength and excellent printing ink adhesion and adhesive receptance [302]. PVC foams containing plasticizers, thermally activated blowing agents, cross-linkers, and heat stabilizers have been manufactured by EB radiation technology [303]. [Pg.877]

Figure 2.4. Reaction coordinate diagram for a simple chemical reaction. The reactant A is converted to product B. The R curve represents the potential energy surface of the reactant and the P curve the potential energy surface of the product. Thermal activation leads to an over-the-barrier process at transition state X. The vibrational states have been shown for the reactant A. As temperature increases, the higher energy vibrational states are occupied leading to increased penetration of the P curve below the classical transition state, and therefore increased tunnelling probability. Figure 2.4. Reaction coordinate diagram for a simple chemical reaction. The reactant A is converted to product B. The R curve represents the potential energy surface of the reactant and the P curve the potential energy surface of the product. Thermal activation leads to an over-the-barrier process at transition state X. The vibrational states have been shown for the reactant A. As temperature increases, the higher energy vibrational states are occupied leading to increased penetration of the P curve below the classical transition state, and therefore increased tunnelling probability.
The Monte Carlo method as described so far is useful to evaluate equilibrium properties but says nothing about the time evolution of the system. However, it is in some cases possible to construct a Monte Carlo algorithm that allows the simulated system to evolve like a physical system. This is the case when the dynamics can be described as thermally activated processes, such as adsorption, desorption, and diffusion. Since these processes are particularly well defined in the case of lattice models, these are particularly well suited for this approach. The foundations of dynamical Monte Carlo (DMC) or kinetic Monte Carlo (KMC) simulations have been discussed by Eichthom and Weinberg (1991) in terms of the theory of Poisson processes. The main idea is that the rate of each process that may eventually occur on the surface can be described by an equation of the Arrhenius type ... [Pg.670]

In addition to the photoluminescence red shifts, broadening of photoluminescence spectra and decrease in the photoluminescence quantum efficiency are reported with increasing temperature. The spectral broadening is due to scattering by coupling of excitons with acoustic and LO phonons [22]. The decrease in the photoluminescence quantum efficiency is due to non-radiative relaxation from the thermally activated state. The Stark effect also produces photoluminescence spectral shifts in CdSe quantum dots [23]. Large red shifts up to 75 meV are reported in the photoluminescence spectra of CdSe quantum dots under an applied electric field of 350 kVcm . Here, the applied electric field decreases or cancels a component in the excited state dipole that is parallel to the applied field the excited state dipole is contributed by the charge carriers present on the surface of the quantum dots. [Pg.300]

Figure 7.5 Schematic presentation of photoactivation and relaxation processes in a CdSe quantum dot aggregate (a) surface-passivation of photoexcited quantum dots by solvent molecules or dissolved oxygen, (b) thermal activation followed by the formation ofa stabilized state, (c) the formation of deep-trap states, (d) non-radiative relaxation of deep-... Figure 7.5 Schematic presentation of photoactivation and relaxation processes in a CdSe quantum dot aggregate (a) surface-passivation of photoexcited quantum dots by solvent molecules or dissolved oxygen, (b) thermal activation followed by the formation ofa stabilized state, (c) the formation of deep-trap states, (d) non-radiative relaxation of deep-...
In order to obtain a definite breakthrough of current across an electrode, a potential in excess of its equilibrium potential must be applied any such excess potential is called an overpotential. If it concerns an ideal polarizable electrode, i.e., an electrode whose surface acts as an ideal catalyst in the electrolytic process, then the overpotential can be considered merely as a diffusion overpotential (nD) and yields (cf., Section 3.1) a real diffusion current. Often, however, the electrode surface is not ideal, which means that the purely chemical reaction concerned has a free enthalpy barrier especially at low current density, where the ion diffusion control of the electrolytic conversion becomes less pronounced, the thermal activation energy (AG°) plays an appreciable role, so that, once the activated complex is reached at the maximum of the enthalpy barrier, only a fraction a (the transfer coefficient) of the electrical energy difference nF(E ml - E ) = nFtjt is used for conversion. [Pg.126]

Temperature influences skin permeability in both physical and physiological ways. For instance, activation energies for diffusion of small nonelectrolytes across the stratum corneum have been shown to lie between 8 and 15 kcal/mole [4,32]. Thus thermal activation alone can double the rate skin permeability when there is a 10°C change in the surface temperature of the skin [33], Additionally, blood perfusion through the skin in terms of amount and closeness of approach to the skin s surface is regulated by its temperature and also by an individual s need to maintain the body s 37° C isothermal state. Since clearance of percuta-neously absorbed drug to the systemic circulation is sensitive to blood flow, a fluctuation in blood flow might be expected to alter the uptake of chemicals. No clear-cut evidence exists that this is so, however, which seems to teach us that even the reduced blood flow of chilled skin is adequate to efficiently clear compounds from the underside of the epidermis. [Pg.209]

The building is in operation since June 2000. The thermally activated ceilings and the air handling units are in operation since the beginning. With high outside air humidities in summer, however, the cooling has to be reduced to prevent from condensation at cold surfaces. [Pg.442]

Fig. 2. Surface temperature dependence of the vibrational excitation of NO(v = 0 — 1) in collisions with a clean Ag(lll) surface. The observed thermal activation was attributed to hot electron-hole-pair recombination transferring energy to NO vibration. This work provided some of the first strong evidence that metal electrons can interact with an adsorbate molecule strongly enough to change its vibrational quantum numbers. (See Ref. 24.)... Fig. 2. Surface temperature dependence of the vibrational excitation of NO(v = 0 — 1) in collisions with a clean Ag(lll) surface. The observed thermal activation was attributed to hot electron-hole-pair recombination transferring energy to NO vibration. This work provided some of the first strong evidence that metal electrons can interact with an adsorbate molecule strongly enough to change its vibrational quantum numbers. (See Ref. 24.)...

See other pages where Surface thermal activation is mentioned: [Pg.9]    [Pg.782]    [Pg.9]    [Pg.782]    [Pg.262]    [Pg.430]    [Pg.313]    [Pg.183]    [Pg.451]    [Pg.530]    [Pg.200]    [Pg.509]    [Pg.225]    [Pg.240]    [Pg.687]    [Pg.711]    [Pg.324]    [Pg.173]    [Pg.249]    [Pg.229]    [Pg.233]    [Pg.233]    [Pg.242]    [Pg.242]    [Pg.294]    [Pg.300]    [Pg.303]    [Pg.401]    [Pg.137]    [Pg.390]    [Pg.109]    [Pg.153]    [Pg.293]    [Pg.166]    [Pg.391]    [Pg.281]    [Pg.249]    [Pg.89]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Thermal activation surface diffusion

Thermal active

Thermally activated

© 2024 chempedia.info