Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface properties atomic scale

Since solids do not exist as truly infinite systems, there are issues related to their temiination (i.e. surfaces). However, in most cases, the existence of a surface does not strongly affect the properties of the crystal as a whole. The number of atoms in the interior of a cluster scale as the cube of the size of the specimen while the number of surface atoms scale as the square of the size of the specimen. For a sample of macroscopic size, the number of interior atoms vastly exceeds the number of atoms at the surface. On the other hand, there are interesting properties of the surface of condensed matter systems that have no analogue in atomic or molecular systems. For example, electronic states can exist that trap electrons at the interface between a solid and the vacuum [1]. [Pg.86]

Surfaces are investigated with surface-sensitive teclmiques in order to elucidate fiindamental infonnation. The approach most often used is to employ a variety of techniques to investigate a particular materials system. As each teclmique provides only a limited amount of infonnation, results from many teclmiques must be correlated in order to obtain a comprehensive understanding of surface properties. In section A 1.7.5. methods for the experimental analysis of surfaces in vacuum are outlined. Note that the interactions of various kinds of particles with surfaces are a critical component of these teclmiques. In addition, one of the more mteresting aspects of surface science is to use the tools available, such as electron, ion or laser beams, or even the tip of a scaiming probe instrument, to modify a surface at the atomic scale. The physics of the interactions of particles with surfaces and the kinds of modifications that can be made to surfaces are an integral part of this section. [Pg.284]

In Chapter 1 we emphasized that the properties of a heterogeneous catalyst surface are determined by its composition and structure on the atomic scale. Hence, from a fundamental point of view, the ultimate goal of catalyst characterization should be to examine the surface atom by atom under the reaction conditions under which the catalyst operates, i.e. in situ. However, a catalyst often consists of small particles of metal, oxide, or sulfide on a support material. Chemical promoters may have been added to the catalyst to optimize its activity and/or selectivity, and structural promoters may have been incorporated to improve the mechanical properties and stabilize the particles against sintering. As a result, a heterogeneous catalyst can be quite complex. Moreover, the state of the catalytic surface generally depends on the conditions under which it is used. [Pg.129]

We have already mentioned that fundamental studies in catalysis often require the use of single crystals or other model systems. As catalyst characterization in academic research aims to determine the surface composition on the molecular level under the conditions where the catalyst does its work, one can in principle adopt two approaches. The first is to model the catalytic surface, for example with that of a single crystal. By using the appropriate combination of surface science tools, the desired characterization on the atomic scale is certainly possible in favorable cases. However, although one may be able to study the catalytic properties of such samples under realistic conditions (pressures of 1 atm or higher), most of the characterization is necessarily carried out in ultrahigh vacuum, and not under reaction conditions. [Pg.166]

Since the main topic of this review is STM imaging, growth properties, surface morphology, and atomic structures of oxide nanosystems are the central themes. Oxide nanolayers on noble metal surfaces often display very complex structural arrangements, as illustrated in the following sections. The determination of the surface structure of a complex oxide nanophase by STM methods is, however, by no means trivial resolution at the atomic scale in STM is a necessary but not sufficient condition for elucidating the atomic structure of an oxide nanophase. The problem... [Pg.148]

The catalytic properties of a surface are determined by its composition and structure on the atomic scale. Hence, it is not sufficient to know that a surface consists of a metal and a promoter, say iron and potassium, but it is essential to know the exact structure of the iron surface, including defects, steps, etc., as well as the exact locations of the promoter atoms. Thus, from a fundamental point of view, the ultimate goal of catalyst characterization should be to look at the surface atom by atom, and under reaction conditions. The well-defined surfaces of single crystals offer the best likelihood of atom-by-atom characterization, although occasionally atomic scale information can be obtained from real catalysts under in situ conditions as well, as the examples in Chapter 9 show. [Pg.18]

One approach to a better understanding of the properties of the solid surface is to model the electron structure with quantum mechanical methods, which is a useful complement to experimental techniques. It allows direct observation of atomic-scale phenomena in complete isolation, which cannot be achieved in current experimental studies. [Pg.221]

In many catalytic systems, nanoscopic metallic particles are dispersed on ceramic supports and exhibit different stmctures and properties from bulk due to size effect and metal support interaction etc. For very small metal particles, particle size may influence both geometric and electronic structures. For example, gold particles may undergo a metal-semiconductor transition at the size of about 3.5 nm and become active in CO oxidation [10]. Lattice contractions have been observed in metals such as Pt and Pd, when the particle size is smaller than 2-3 nm [11, 12]. Metal support interaction may have drastic effects on the chemisorptive properties of the metal phase [13-15]. Therefore the stmctural features such as particles size and shape, surface stmcture and configuration of metal-substrate interface are of great importance since these features influence the electronic stmctures and hence the catalytic activities. Particle shapes and size distributions of supported metal catalysts were extensively studied by TEM [16-19]. Surface stmctures such as facets and steps were observed by high-resolution surface profile imaging [20-23]. Metal support interaction and other behaviours under various environments were discussed at atomic scale based on the relevant stmctural information accessible by means of TEM [24-29]. [Pg.474]

The electrochemical properties of metals in an electrolyte solution are strongly connected to their surface properties on an atomic or molecular scale such as the structure of the surface and the presence of adsorbates. In this section, we consider how the interfacial potential is linked to the structure of the surface and the adsorption of electrolyte ions and solvent molecules... [Pg.412]

The global thermodynamic approach used in the above sections is insensitive to details at the atomic level and can only yield a gross characterization of the surface. Properties such as the specific surface area and the presence or absence of pores can be determined using the above approach since only the average surface —not atomic details —is involved. The existence of a distribution of surface energy sites can also be inferred from adsorption data, but the method falls short when it comes to specifics about this distribution. Observations on an atomic scale are needed to learn more about the details of the surface structure. Such observations comprise the subject matter of the last two sections of the chapter. [Pg.406]


See other pages where Surface properties atomic scale is mentioned: [Pg.19]    [Pg.239]    [Pg.142]    [Pg.142]    [Pg.55]    [Pg.283]    [Pg.46]    [Pg.466]    [Pg.467]    [Pg.498]    [Pg.173]    [Pg.115]    [Pg.182]    [Pg.77]    [Pg.355]    [Pg.21]    [Pg.510]    [Pg.69]    [Pg.37]    [Pg.68]    [Pg.222]    [Pg.412]    [Pg.377]    [Pg.131]    [Pg.3]    [Pg.62]    [Pg.201]    [Pg.75]    [Pg.171]    [Pg.44]    [Pg.84]    [Pg.92]    [Pg.166]    [Pg.917]    [Pg.210]    [Pg.6]    [Pg.158]    [Pg.214]    [Pg.6]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Atomic property

Scale atomic

Surface atoms

© 2024 chempedia.info