Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface polysulfone

Fig. 4. Surface of a polysulfone ultrafUtration hoUow-fiber membrane spun with poly-(vinylpyrrohdinone) (3). Surface pore diameter is 0.2—0.4 p.m. Fig. 4. Surface of a polysulfone ultrafUtration hoUow-fiber membrane spun with poly-(vinylpyrrohdinone) (3). Surface pore diameter is 0.2—0.4 p.m.
Fig. 10. Composite hoUow-fiber membranes (a) polysulfone boUow fiber coated witb fiiran resin. A and B denote fiiran resin surface and porous support, respectively (b) cross section of composite boUow fiber (PEI/TDI coated on polysulfone matrix). C, D, and E denote tightly cross-linked surface, "gutter" gel layer, and porous support, respectively. Both fibers were developed for reverse osmosis appHcation (15). Fig. 10. Composite hoUow-fiber membranes (a) polysulfone boUow fiber coated witb fiiran resin. A and B denote fiiran resin surface and porous support, respectively (b) cross section of composite boUow fiber (PEI/TDI coated on polysulfone matrix). C, D, and E denote tightly cross-linked surface, "gutter" gel layer, and porous support, respectively. Both fibers were developed for reverse osmosis appHcation (15).
An excellent review of composite RO and nanofiltration (NE) membranes is available (8). These thin-fHm, composite membranes consist of a thin polymer barrier layer formed on one or more porous support layers, which is almost always a different polymer from the surface layer. The surface layer determines the flux and separation characteristics of the membrane. The porous backing serves only as a support for the barrier layer and so has almost no effect on membrane transport properties. The barrier layer is extremely thin, thus allowing high water fluxes. The most important thin-fHm composite membranes are made by interfacial polymerization, a process in which a highly porous membrane, usually polysulfone, is coated with an aqueous solution of a polymer or monomer and then reacts with a cross-linking agent in a water-kniniscible solvent. [Pg.144]

Membranes UF membranes consist primarily of polymeric structures (polyethersulfone, regenerated cellulose, polysulfone, polyamide, polyacrylonitrile, or various fluoropolymers) formed by immersion casting on a web or as a composite on a MF membrane. Hydrophobic polymers are surface-modified to render them hydrophilic and thereby reduce fouling, reduce product losses, and increase flux [Cabasso in Vltrafiltration Membranes and Applications, Cooper (ed.). Plenum Press, New York, 1980]. Some inorganic UF membranes (alumina, glass, zirconia) are available but only find use in corrosive applications due to their high cost. [Pg.51]

Direct fluorination of polymer or polymer membrane surfaces creates a thin layer of partially fluorinated material on the polymer surface. This procedure dramatically changes the permeation rate of gas molecules through polymers. Several publications in collaboration with Professor D. R. Paul62-66 have investigated the gas permeabilities of surface fluorination of low-density polyethylene, polysulfone, poly(4-methyl-1 -pentene), and poly(phenylene oxide) membranes. [Pg.219]

In the first stage in order to test the process of various types of polymer films were surface-fluorinated. From 1990 to 1994 it was shown that XeF2 could be used effectively for surface fluorination of a variety of plastics. Polyethylene film and plates,18 aromatic polysulfone,19 polyvinyltrimethylsilane,20 and polycarbonate,21 among other polymeric materials, were fluorinated successfully. [Pg.232]

Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads... Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads...
Geong and coworkers reported a new concept for the formation of zeolite/ polymer mixed-matrix reverse osmosis (RO) membranes by interfacial polymerization of mixed-matrix thin films in situ on porous polysulfone (PSF) supports [83]. The mixed-matrix films comprise NaA zeoHte nanoparticles dispersed within 50-200 nm polyamide films. It was found that the surface of the mixed-matrix films was smoother, more hydrophilic and more negatively charged than the surface of the neat polyamide RO membranes. These NaA/polyamide mixed-matrix membranes were tested for a water desalination application. It was demonstrated that the pure water permeability of the mixed-matrix membranes at the highest nanoparticle loadings was nearly doubled over that of the polyamide membranes with equivalent solute rejections. The authors also proved that the micropores of the NaA zeolites played an active role in water permeation and solute rejection. [Pg.346]

Figure 5. THF convection flow from the surface of polysulfone (15 wt % in THF). Figure 5. THF convection flow from the surface of polysulfone (15 wt % in THF).
Figure 12. Cross-section of the surface zone of a polysulfone hollow fiber (spun from DMF directly into water while conducting nitrogen through the lumen)... Figure 12. Cross-section of the surface zone of a polysulfone hollow fiber (spun from DMF directly into water while conducting nitrogen through the lumen)...
Figure 15. Bottom surfaces (A) phos-phonylated-PPO reverse osmosis membrane (B) interior skin at lumen of the polysulfone hollow fiber shown in Figure 12. Figure 15. Bottom surfaces (A) phos-phonylated-PPO reverse osmosis membrane (B) interior skin at lumen of the polysulfone hollow fiber shown in Figure 12.
In 1966, Cadotte developed a method for casting mlcroporous support film from polysulfone, polycarbonate, and polyphenylene oxide plastics ( ). Of these, polysulfone (Union Carbide Corporation, Udel P-3500) proved to have the best combination of compaction resistance and surface microporosity. Use of the mlcroporous sheet as a support for ultrathin cellulose acetate membranes produced fluxes of 10 to 15 gfd, an increase of about five-fold over that of the original mlcroporous asymmetric cellulose acetate support. Since that time, mlcroporous polysulfone has been widely adopted as the material of choice for the support film in composite membranes, while finding use itself in many ultrafiltration processes. [Pg.306]

Polysulfone supports are well suited for the fifth method listed in Table 1. In this approach. Method E, the support film is saturated with a water solution containing diamines, polyamines or diphenols, plus other additives such as acid acceptors and surfactants. The saturated film is contacted with a nonmlscible solvent containing di- or triacyl chloride reactants. A condensation polymer forms at the interface. The film is dried to bond the thin Interfacial film to the support surface. In some... [Pg.309]

The reactions produced a membrane having three distinct zones of increasing porosity 1) the mlcroporous polysulfone support film, 2) a thin, crosslinked polyethylenlmine zone of Intermediate porosity and moderate salt rejection, and 3) the dense polyamide (or polyurea) surface skin which acted as the high retention barrier. ... [Pg.310]

Various noncellulosic thln-film-composlte membranes were examined by scanning electron microscopy (SEM). Figure 3 illustrates the type of surface structure and cross-sections that exist in these membranes. Figure 3a shows the surface microporosity of polysulfone support films. Micropores in the film were measured by both SEM and TEM typically pore radii averaged 330 A. Figure 3b is a photomicrograph of a cross-section of a NS-lOO membrane. [Pg.320]

Figure 3a. SEM photomicrographs of composite membranes surface structure of microporous polysulfone support material. Figure 3a. SEM photomicrographs of composite membranes surface structure of microporous polysulfone support material.
A smooth top surface corresponding to the dense barrier layer is evident. The porous, spongy polysulfone matrix is evident below this surface layer. Although not evident in this photomicrograph, the thickness of the barrier layer and crosslinked polyethylenimine Intermediate layer, taken together, is approximately 2000 A. [Pg.324]

Figure 3c is a high magnification view of an NS-lOO membrane surface, and shows a featureless plain punctuated by occasional artifacts (loose polysulfone microbeads). [Pg.324]

The ability of a liquid to "wet" the membrane material is an indication of that liquids ability to establish and maintain such an interfacial layer. Liquids of surface tension values less than the critical surface tension iy ) of the membrane material are capable of completely "wetting" the polymer. It may be possible therefore, to select membrane materials capable of accomplishing specific separations by their ability to be wet by one solution component but not by the other. For this reason Yc membrane materials is important. By employing the standard techniques of Zisman (43), the critical surface tension for PSF and CA were determined to be 43.0 and 36.5 dynes/cm, respectively. This data indicates that PSF is more readily wet by a larger number of liquids than is CA. Similar measurements for the various sulfonated polysulfones are underway. [Pg.337]

Membranes have been used for affinity chromatography in various formats, such as stacked sheets, in rolled geometries, or as hollow fibers. Materials that are commonly used for these membranes are cellulose, polysulfone, and polyamide. Because of their lack of diffusion pores, the surface area in these materials is as low as it is in nonporous beads. However, the flat geometry and shallow bed depth of membranes keep the pressure drop across them to a minimum degree. This means that high flow rates can be used, which makes these membranes especially well-suited for capturing proteins from dilute feed streams. [Pg.69]


See other pages where Surface polysulfone is mentioned: [Pg.143]    [Pg.381]    [Pg.150]    [Pg.468]    [Pg.295]    [Pg.3]    [Pg.71]    [Pg.457]    [Pg.266]    [Pg.79]    [Pg.3]    [Pg.664]    [Pg.12]    [Pg.539]    [Pg.95]    [Pg.87]    [Pg.289]    [Pg.305]    [Pg.307]    [Pg.311]    [Pg.316]    [Pg.324]    [Pg.288]    [Pg.528]    [Pg.221]    [Pg.221]    [Pg.228]   
See also in sourсe #XX -- [ Pg.40 , Pg.41 ]




SEARCH



Polysulfones

© 2024 chempedia.info