Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface modification activation

Fig. 1. Fquilihrium isotherms for adsorption on activated carbon at 298 K showing the effect of surface modification (2). —, SO2 -... Fig. 1. Fquilihrium isotherms for adsorption on activated carbon at 298 K showing the effect of surface modification (2). —, SO2 -...
Surface Modification. Plasma surface modification can include surface cleaning, surface activation, heat treatments, and plasma polymerization. Surface cleaning and surface activation are usually performed for enhanced joining of materials (see Metal SURFACE TREATMENTS). Plasma heat treatments are not, however, limited to high temperature equiUbrium plasmas on metals. Heat treatments of organic materials are also possible. Plasma polymerization crosses the boundaries between surface modification and materials production by producing materials often not available by any other method. In many cases these new materials can be appHed directly to a substrate, thus modifying the substrate in a novel way. [Pg.115]

Modification of filler s surface by active media leads to the same strong variation in viscosity. We can point out as an example the results of work [8], in which the values of the viscosity of dispersions of CaC03 in polystyrene melt were compared. For q> = 0.3 and the diameter of particles equal to 0.07 nm a treatment of the filler s surface by stearic acid caused a decrease in viscosity in the region of low shear rates as compared to the viscosity of nontreated particles more than by ten times. This very strong result, however, should not possibly be understood only from the point of view of viscometric measurements. The point is that, as stated above, a treatment of the filler particles affects its ability to netformation. Therefore for one and the same conditions of measuring viscosity, the dispersions being compared are not in equivalent positions with respect to yield stress. Thus, their viscosities become different. [Pg.90]

Dehydration reactions. In early studies of dehydration reactions (e.g. of CuS04 5 H20 [400]), the surfaces of large crystals of reactant were activated through the incorporation of product into surfaces by abrasion with dehydrated material. An advantage of this pretreatment was the elimination of the problems of kinetic analysis of the then little understood relationship between a and time during the acceleratory process. Such surface modification resulted in the effective initiation of reaction at all boundary surfaces and rate studies were exclusively directed towards measurement of the rate of interface advance into the bulk. [Pg.262]

When the films were treated in either an oxygen plasma environment or under UV/ozone irradiation, the rates of oxidation were faster for the plasma process. Irradiation of chitosan solution showed that UV/ozone induces depolymerization. In both plasma and UV/ozone reactions, the main active component for surface modification was UV irradiation at a wavelength below 360 nm [231]. [Pg.183]

Effect of surface modification by low temperature plasma on the photocatalytic activity of TiOi thin film... [Pg.473]

Zinc sulfide, with its wide band gap of 3.66 eV, has been considered as an excellent electroluminescent (EL) material. The electroluminescence of ZnS has been used as a probe for unraveling the energetics at the ZnS/electrolyte interface and for possible application to display devices. Fan and Bard [127] examined the effect of temperature on EL of Al-doped self-activated ZnS single crystals in a persulfate-butyronitrile solution, as well as the time-resolved photoluminescence (PL) of the compound. Further [128], they investigated the PL and EL from single-crystal Mn-doped ZnS (ZnS Mn) centered at 580 nm. The PL was quenched by surface modification with U-treated poly(vinylferrocene). The effect of pH and temperature on the EL of ZnS Mn in aqueous and butyronitrile solutions upon reduction of per-oxydisulfate ion was also studied. EL of polycrystalline chemical vapor deposited (CVD) ZnS doped with Al, Cu-Al, and Mn was also observed with peaks at 430, 475, and 565 nm, respectively. High EL efficiency, comparable to that of singlecrystal ZnS, was found for the doped CVD polycrystalline ZnS. In all cases, the EL efficiency was about 0.2-0.3%. [Pg.237]

Uptake, which was seen to be suppressed in the order Ru/Se > Ru/S > Ru black, in accordance with the ORR activity. It should be noted that unlike the cluster-type Ru i Se), and Ru/Se materials, surface modification of bulk polycrystalline Ru with Se did not lead to comparable enhancement of the ORR activity. [Pg.316]

One promising extension of this approach Is surface modification by additives and their Influence on reaction kinetics. Catalyst activity and stability under process conditions can be dramatically affected by Impurities In the feed streams ( ). Impurities (promoters) are often added to the feed Intentionally In order to selectively enhance a particular reaction channel (.9) as well as to Increase the catalyst s resistance to poisons. The selectivity and/or poison tolerance of a catalyst can often times be Improved by alloying with other metals (8,10). Although the effects of Impurities or of alloying are well recognized In catalyst formulation and utilization, little Is known about the fundamental mechanisms by which these surface modifications alter catalytic chemistry. [Pg.186]

Surface characterisation methods, both elemental (e.g. XPS, AES) and molecular (e.g. ToF-SIMS), are gaining in importance, in view of the active development of surface-modification technology to render fillers of all types more acceptable to the matrix and improve... [Pg.738]

Organometallic dendrimers have been constructed to act as potential electro-or photo-active materials, the synthesis of which will be discussed in the following section. Apart from the examples discussed above, surface modification of dendrimers with a variety of functional groups has afforded novel redox active materials [110-116]. [Pg.53]

The improvement of its activity and stability has been approach by the use of GE tools (see Refs. [398] and [399], respectively). A process drawback is the fact that the oxidation of hydrophobic compounds in an organic solvent becomes limited by substrate partition between the active site of the enzyme and the bulk solvent [398], To provide the biocatalyst soluble with a hydrophobic active site access, keeping its solubility in organic solvents, a double chemical modification on horse heart cytochrome c has been performed [400,401], First, to increase the active-site hydrophobicity, a methyl esterification on the heme propionates was performed. Then, polyethylene glycol (PEG) was used for a surface modification of the protein, yielding a protein-polymer conjugates that are soluble in organic solvents. [Pg.187]

Heat-flow calorimetry may be used also to detect the surface modifications which occur very frequently when a freshly prepared catalyst contacts the reaction mixture. Reduction of titanium oxide at 450°C by carbon monoxide for 15 hr, for instance, enhances the catalytic activity of the solid for the oxidation of carbon monoxide at 450°C (84) and creates very active sites with respect to oxygen. The differential heats of adsorption of oxygen at 450°C on the surface of reduced titanium dioxide (anatase) have been measured with a high-temperature Calvet calorimeter (67). The results of two separate experiments on different samples are presented on Fig. 34 in order to show the reproducibility of the determination of differential heats and of the sample preparation. [Pg.257]

Hong et al. (2004) also found that modification of PAMAM dendrimers with a short PEG linker arm could act to reduce nonspecificity caused by the amines on the dendrimer-modified surface. An azido-PEGj-aininc spacer was activated with nitrophenyl carbamate to yield an activated intermediate that could be used to modify the amines on the dendrimer (Figure 7.24). Reaction at high molar ratio resulted in about 61 PEG-azido spacers on the dendrimer. Reduction of the azido group to an amine using triphenylphosphine in THF provided the dendrimer-PEG-amine derivative for surface modification. The added presence of the PEG spacer arm reduced... [Pg.385]


See other pages where Surface modification activation is mentioned: [Pg.443]    [Pg.443]    [Pg.500]    [Pg.538]    [Pg.414]    [Pg.4]    [Pg.46]    [Pg.70]    [Pg.252]    [Pg.213]    [Pg.364]    [Pg.872]    [Pg.874]    [Pg.1050]    [Pg.765]    [Pg.276]    [Pg.312]    [Pg.294]    [Pg.36]    [Pg.29]    [Pg.182]    [Pg.211]    [Pg.77]    [Pg.237]    [Pg.2]    [Pg.504]    [Pg.453]    [Pg.457]    [Pg.111]    [Pg.491]    [Pg.169]    [Pg.387]    [Pg.615]    [Pg.681]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



PDMS Surface Modification activation

© 2024 chempedia.info