Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface membrane potential principles

Non-labelled immunosensors rely on various principles (Fig. 3.27.A). Either the antibody or the antigen is immobilized on the solid matrix to form a sensing device. The solid matrix should be sensitive enough at the surface to detect immunocomplex formation. Electrode, membrane, piezoelectric and optically active surfaces may in principle be used to construct non-labelled immunosensors. The antigen or antibody to be determined is dissolved in a solution and reacted with the complementary matrix-bound antibody or antigen to form an immunocomplex that alters the physical e.g. the electrode potential or intrinsic piezofrequency) or optical properties of the... [Pg.155]

The rate of the active transport of sodium ion across frog skin depends both on the electrochemical potential difference between the two sides of this complex membrane (or, more exactly, membrane system) and also on the affinity of the chemical reaction occurring in the membrane. This combination of material flux, a vector, and chemical flux (see Eq. 2.3.26), which is scalar in nature, is possible according to the Curie principle only when the medium in which the chemical reaction occurs is not homogeneous but anisotropic (i.e. has an oriented structure in the direction perpendicular to the surface of the membrane or, as is sometimes stated, has a vectorial character). [Pg.461]

Slow dyes that respond via a redistribution across the entire membrane (sometimes called Nemstain dyes) do so because of a change in the transmembrane electrical potential. As such, they can only be used as probes of the transmembrane potential and not as probes of the surface potential or the dipole potential. Dyes whose electric field sensing mechanism involves a movement between the aqueous medium and its adjacent membrane interface on one side of the membrane can, in principle, respond to changes in both the transmembrane electrical potential and the surface potential. Fast dyes that remain totally in the membrane phase (e.g., styrylpyridinium, annellated hemicyanine, and 3-hydroxyflavone dyes) respond to their local electric field strength, whatever its origin. Therefore, these dyes can, in principle, be used as probes of the transmembrane electrical potential, the surface potential, or the dipole potential. [Pg.341]

In principle the ISO-NOP sensor works as follows. The sensor is immersed in a solution containing NO and a positive potential of —860 mV (vs Ag/AgCl reference electrode) is applied. NO diffuses across the gas permeable/NO-selective membrane and is oxidized at the working electrode surface producing a redox current. This oxidation proceeds via an electrochemical reaction followed by a chemical reaction. The electrochemical reaction is a one-electron transfer from the NO molecule to the electrode, resulting in the formation of the nitrosonium cation ... [Pg.28]

Two main groups of indicator electrodes are considered here. In one case, metal indicator electrodes that exhibit a potential difference as a consequence of a redox process occurring at the metal surface are examined. Later, ISEs that can respond to ionic species based on the principles of ion extraction across an active sensing membrane will be studied in detail. [Pg.633]

The cells shown in Figs. 28 and 29 all operate according to the same principles, which have been developed by Arup. The interior of the cell acts as the anode chamber, and a metal oxide cathode placed inside the cell in an alkaline electrolyte acts as the counter electrode. The hydrogen flux across the integrated membrane (coated with palladium on the internal surface) can be measured as the potential drop across a resistor placed between the membrane and the counter electrode. [Pg.309]

Compounds can cross biological membranes by two passive processes, transcellu-lar and paracellular mechanisms. For transcellular diffusion two potential mechanisms exist. The compound can distribute into the lipid core of the membrane and diffuse within the membrane to the basolateral side. Alternatively, the solute may diffuse across the apical cell membrane and enter the cytoplasm before exiting across the basolateral membrane. Because both processes involve diffusion through the lipid core of the membrane the physicochemistry of the compound is important. Paracellular absorption involves the passage of the compound through the aqueous-filled pores. Clearly in principle many compounds can be absorbed by this route but the process is invariably slower than the transcellular route (surface area of pores versus surface area of the membrane) and is very dependent on molecular size due to the finite dimensions of the aqueous pores. [Pg.39]

Composite metal membranes are most often the structure of choice when a reactive group 3-5 metal or alloy is the principle constituent of the membrane. The relative chemical reactivity of these metals dictates that an inert coating must be applied to at least the feed surface of the membrane. Palladium, or better yet a palladium alloy, customarily serves as the coating layer. If it can be guaranteed that the permeate side of the membrane will never be exposed to reactive gases (e.g., water, carbon oxides, and hydrocarbons), then a two-layer composite membrane is a satisfactory choice. However, normal operating procedures and the potential for process upsets typically favors the selection of a three-layer composite structure. [Pg.373]


See other pages where Surface membrane potential principles is mentioned: [Pg.267]    [Pg.212]    [Pg.278]    [Pg.212]    [Pg.278]    [Pg.209]    [Pg.843]    [Pg.244]    [Pg.244]    [Pg.75]    [Pg.106]    [Pg.214]    [Pg.286]    [Pg.81]    [Pg.470]    [Pg.383]    [Pg.643]    [Pg.25]    [Pg.244]    [Pg.421]    [Pg.646]    [Pg.655]    [Pg.12]    [Pg.177]    [Pg.252]    [Pg.271]    [Pg.304]    [Pg.272]    [Pg.208]    [Pg.3]    [Pg.21]    [Pg.354]    [Pg.362]    [Pg.231]    [Pg.3262]    [Pg.3183]    [Pg.56]    [Pg.25]    [Pg.259]    [Pg.113]    [Pg.103]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Membrane potential

Membrane principles

Membrane surface potential

Surface membranes

© 2024 chempedia.info