Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface fluorination mechanism

Surface fluorination is in popular use because most ofthe desirable properties offluoropolymers are largely the result of surface phenomena. Surface fluorination enables us to modify the surface properties of a polymer while retaining others often useful bulk properties (e.g., mechanical strength, elasticity, and ease of processability. [Pg.223]

It is believed that polymer surface fluorination proceeds via a free radical mechanism, where fluorine abstracts hydrogen atoms from the hydrocarbon, and fluorine atoms are substituted.11 Of course, the precise conditions depend on the nature of the polymer in question and the surface properties required. [Pg.229]

Although we made no attempt to elucidate the mechanism of friction decreases in rubbers after surface fluorination, it seems to us that apart from the substitution of H atoms to F in the polymer macromolecule, which forms a fluoropolymer on the surface, there is another phenomenon that makes a significant contribution to the friction decreases, i.e., fluorination of carbon black, which is used in rubber recipes for reinforcement. It appears that when the carbon black in the surface of the rubber is fluorinated it produces a lubricating effect, followed by blooming on the surface of the treated rubber while it is under a friction load. So, in our opinion, two effects contribute to friction decrease of carbon-filled rubbers fluorination of the rubber macromolecules and fluorination of the carbon black rubbers that do not contain carbon black show a much smaller decrease in friction after XeF2 treatment. [Pg.235]

One postulated reaction mechanism for electrochemical fluorination involves an intermediate nickel fluoride, with nickel in the oxidation stage +III/ + IV, as the active fluorination agent. The induction period in which the nickel fluoride layer is formed at the nickel surface can thus be explained. A radical fluorination mechanism has also been postulated, with oxidation of the fluoride anion to the radical, or as discussed below in the ECEC mechanism.15 The mechanism of this process is still a matter for debate. Reference should be made to a report that does not support the postulates of this section.21 For partial electrochemical fluorination, the ECEC mechanism is postulated as follows. In the first step the starting material is oxidized at the anode (E = electrochemical step). [Pg.307]

The process of mathematical fitting is error-prone, and especially two different issues have to be considered, the first one dealing with the boundary conditions of the fitting procedure itself A pure diffusion process is considered here as the only transport mechanism for fluorine in the sample. A constant value for the diffusion constant D, invariant soil temperatures and a constant supply of fluorine (e.g. a constant soil humidity) are assumed, the latter effect theoretically resulting in a constant surface fluorine concentration for samples collected at the same burial site. In mathematical terms, Dt is influenced by the spatial resolution of the scanning beam, the definition of the exact position of the bone surface, which usually coincides with the maximum fluorine concentration, and by the original fluorine concentration in the bulk of the object, which in most cases is still detectable. A detailed description on... [Pg.237]

Numerous avenues to produce these materials have been explored (128—138). The synthesis of two new fluorinated bicycHc monomers and the use of these monomers to prepare fluorinated epoxies with improved physical properties and a reduced surface energy have been reported (139,140). The monomers have been polymerized with the diglycidyl ether of bisphenol A, and the thermal and mechanical properties of the resin have been characterized. The resulting polymer was stable up to 380°C (10% weight loss by tga). [Pg.540]

A C60 derivative with an attached fluorinated chain gave a limiting area of 0.78 nm molecule [266]. It was reported that this film was so mechanically rigid that it pushed the Wilhehny plate out of the water at 11 14 mN m The monolayer spreading of this compound arises from the even greater hydrophobicity of the fluorocarbon chains and their orientation away from the water surface. The LB films with a fluorinated tetrathiafulvalene derivative did not show evidence of charge transfer in their UV spectra. [Pg.106]

PTFE, known under the trade names Teflon and Fluon, is resistant to all chemicals, except molten alkalies and fluorine, and can be used at temperatures up to 250°C. It is a relatively weak material, but its mechanical strength can be improved by the addition of fillers (glass and carbon fibres). It is expensive and difficult to fabricate. PTFE is used extensively for gaskets and gland packings. As a coating, it is used to confer non-stick properties to surfaces, such as filter plates. It can also be used as a liner for vessels. [Pg.302]


See other pages where Surface fluorination mechanism is mentioned: [Pg.462]    [Pg.462]    [Pg.112]    [Pg.357]    [Pg.112]    [Pg.467]    [Pg.468]    [Pg.519]    [Pg.112]    [Pg.280]    [Pg.311]    [Pg.152]    [Pg.163]    [Pg.91]    [Pg.222]    [Pg.300]    [Pg.91]    [Pg.534]    [Pg.83]    [Pg.1711]    [Pg.2066]    [Pg.2805]    [Pg.198]    [Pg.70]    [Pg.111]    [Pg.550]    [Pg.133]    [Pg.193]    [Pg.472]   
See also in sourсe #XX -- [ Pg.229 ]

See also in sourсe #XX -- [ Pg.229 ]

See also in sourсe #XX -- [ Pg.229 ]




SEARCH



Fluorination mechanism

Mechanisms surfaces

Surface fluorination

Surface mechanics

Surfaces Mechanical

© 2024 chempedia.info