Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface diffusion Temperature dependence

The amount of adsorption is limited by the available surface and pore volume, and depends also on the chemical natures of the fluid and solid. The rate of adsorption also depends on the amount of exposed surface but, in addition, on the rate of diffusion to the external surface and through the pores of the solid for accessing the internal surface which comprises the bulk of the surface. Diffusion rates depend on temperature and differences in concentration or partial pressures. The smaller the particle size, the greater is the utilization of the internal surface, but also the greater the pressure drop for flow of bulk fluid through a mass of the particles. [Pg.495]

Micropore Diffusion. In very small pores in which the pore diameter is not much greater than the molecular diameter the diffusing molecule never escapes from the force field of the pore wall. Under these conditions steric effects and the effects of nonuniformity in the potential field become dominant and the Knudsen mechanism no longer appHes. Diffusion occurs by an activated process involving jumps from site to site, just as in surface diffusion, and the diffusivity becomes strongly dependent on both temperature and concentration. [Pg.258]

Cementation coatings rely on diffusion to develop the desired surface aUoy layer. Not only does the coating continue to diffuse into the substrate during service, thereby depleting the surface coating, but often the substrate material diffuses into the surface where it can be oxidized. Because the diffusion rate is temperature dependent, this may occur slowly at lower service temperatures. [Pg.47]

The mobility or diffusion of die atoms over the surface of die substrate, and over the film during its formation, will occur more rapidly as the temperature increases since epitaxy can be achieved, under condition of ctystallographic similarity between die film and the subsuate, when the substrate temperamre is increased. It was found experimentally that surface diffusion has a closer relationship to an activation-dependent process than to the movement of atoms in gases, and the temperamre dependence of the diffusion of gases. For surface diffusion the variation of the diffusion coefficient widr temperature is expressed by the Anhenius equation... [Pg.30]

Since radiation arriving at a black surface is completely absorbed, no problems arise from multiple reflections. Radiation is emitted from a diffuse surface in all directions and therefore only a proportion of the radiation leaving a surface arrives at any other given surface. This proportion depends on the relative geometry of the surfaces and this may be taken into account by the view factor, shape factor or configuration F, which is normally written as F, for radiation arriving at surface j from surface i. In this way, F,y, which is, of course, completely independent of the surface temperature, is the fraction of radiation leaving i which is directly intercepted by j. [Pg.447]

For example, for alkyl (8-16) glycoside (Plantacare 818 UP) non-ionic surfactant solution of molecular weight 390 g/mol, an increase in surfactant concentration up to 300 ppm (CMC concentration) leads to a significant decrease in surface tension. In the range 300 < C < 1,200 ppm the surface tension was almost independent of concentration. In all cases an increase in liquid temperature leads to a decrease in surface tension. This surface tension relaxation is a diffusion rate-dependent process, which typically depends on the type of surfactant, its diffusion/absorption kinetics, micellar dynamics, and bulk concentration levels. As the CMC is approached the absorption becomes independent of the bulk concentration, and the surfactant... [Pg.70]

Atmospheric Reaeration. Interfacial properties and phenomena that govern oxygen concentrations in river systems include 1) oxygen solubility (temperature, partial pressure and surface dependency), 2) rate of dissolution of oxygen (saturation level, temperature and surface thin film dependency, i.e., ice, wind), and 3) transport of oxygen via mixing and molecular diffusion. A number of field and empirically derived mathematical relationships have been developed to describe these processes and phenomena, the most common of which is (32) ... [Pg.250]

Finally, although both temperature-programmed desorption and reaction are indispensable techniques in catalysis and surface chemistry, they do have limitations. First, TPD experiments are not performed at equilibrium, since the temperature increases constantly. Secondly, the kinetic parameters change during TPD, due to changes in both temperature and coverage. Thirdly, temperature-dependent surface processes such as diffusion or surface reconstruction may accompany desorption and exert an influence. Hence, the technique should be used judiciously and the derived kinetic data should be treated with care ... [Pg.279]

What happens to the methoxy formed by this process is strongly temperature dependent. At low temperature (up to - 340K) it is stable on the surface and forms the beautiful structures shown in fig.2. Since the active oxygen is used in such reactions then the methoxy must (i) not block the active site at its formation or (ii) diffuses away from the active site. Our evidence indicates the latter to be the case since methoxy is present at sites away from the oxygen islands. Above approximately 340 K the methoxy is unstable and decomposes to yield formaldehyde and hydrogen in the gas phase. Above approximately 400 K, the stoichiometry of the reaction changes to... [Pg.291]

This situation is termed pore-mouth poisoning. As poisoning proceeds the inactive shell thickens and, under extreme conditions, the rate of the catalytic reaction may become limited by the rate of diffusion past the poisoned pore mouths. The apparent activation energy of the reaction under these extreme conditions will be typical of the temperature dependence of diffusion coefficients. If the catalyst and reaction conditions in question are characterized by a low effectiveness factor, one may find that poisoning only a small fraction of the surface gives rise to a disproportionate drop in activity. In a sense one observes a form of selective poisoning. [Pg.464]

PVCL microgels prepared via covalent binding of PEO exhibit different temperature dependence (Fig. 19). In this case, a considerable increase in the diffusion coefficient takes place above the LCST of PVCL. The sudden increase may be attributed to the shrinking of the particle, which leads to an increase in the rate of its translational diffusion and, consequently, also in the rate of diffusion of the grafts bound to the particle surface. The values of the diffusion coefficients above the LCST should be taken as apparent ones, as the measurements were complicated by the heterogeneity of the collapsed samples. [Pg.57]

The resistance thermometry is based on the temperature dependence of the electric resistance of metals, semiconductors and other resistive materials. This is the most diffused type of low-temperature thermometry sensors are usually commercial low-cost components. At very low temperatures, however, several drawbacks take place such as the low thermal conductivity in the bulk of the resistance and at the contact surface, the heating due to RF pick up and overheating (see Section 9.6.3)... [Pg.217]


See other pages where Surface diffusion Temperature dependence is mentioned: [Pg.24]    [Pg.120]    [Pg.46]    [Pg.195]    [Pg.166]    [Pg.61]    [Pg.62]    [Pg.196]    [Pg.180]    [Pg.185]    [Pg.221]    [Pg.10]    [Pg.43]    [Pg.421]    [Pg.450]    [Pg.222]    [Pg.399]    [Pg.536]    [Pg.241]    [Pg.450]    [Pg.32]    [Pg.89]    [Pg.48]    [Pg.69]    [Pg.242]    [Pg.112]    [Pg.119]    [Pg.88]    [Pg.129]    [Pg.210]    [Pg.98]    [Pg.632]    [Pg.442]    [Pg.10]   
See also in sourсe #XX -- [ Pg.404 ]




SEARCH



Diffuse surface

Diffusion dependencies

Diffusion temperature

Diffusion temperature dependence

Diffusion temperature-dependent diffusivity

Diffusivity dependence

Surface dependence

Surface diffusion

Surface diffusion Diffusivity

Surface diffusivity

Surface temperatures

Temperature-dependent diffusivity

© 2024 chempedia.info