Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface diffusion of reactant

The sequence of events in a surface-catalyzed reaction comprises (1) diffusion of reactants to the surface (usually considered to be fast) (2) adsorption of the reactants on the surface (slow if activated) (3) surface diffusion of reactants to active sites (if the adsorption is mobile) (4) reaction of the adsorbed species (often rate-determining) (5) desorption of the reaction products (often slow) and (6) diffusion of the products away from the surface. Processes 1 and 6 may be rate-determining where one is dealing with a porous catalyst [197]. The situation is illustrated in Fig. XVIII-22 (see also Ref. 198 notice in the figure the variety of processes that may be present). [Pg.720]

There was therefore a clear need to assess the assumptions inherent in the classical kinetic approach for determining surface-catalysed reaction mechanisms where no account is taken of the individual behaviour of adsorbed reactants, substrate atoms, intermediates and their respective surface mobilities, all of which can contribute to the rate at which reactants reach active sites. The more usual classical approach is to assume thermodynamic equilibrium and that surface diffusion of reactants is fast and not rate determining. [Pg.51]

Under closed-circuit conditions, the electrochemical reactions involve a number of sequential steps, including adsorption/desorption, surface diffusion of reactants or products, and the charge transfer to or from the electrode. Charge transfer is restricted to a narrow (almost one-dimensional) three-phase boundary (tpb) among the gaseous reactants, the electrolyte, and the electrode-catalyst. [Pg.53]

Pore diameter and distribution are important factors. Small pores limit the accessibihty of internal surface because of increased resistance to diffusion of reactants inwards. Diffusion of products outwards also is slowed, and degradation of those produces may result. [Pg.2095]

Very recently, considerable effort has been devoted to the simulation of the oscillatory behavior which has been observed experimentally in various surface reactions. So far, the most studied reaction is the catalytic oxidation of carbon monoxide, where it is well known that oscillations are coupled to reversible reconstructions of the surface via structure-sensitive sticking coefficients of the reactants. A careful evaluation of the simulation results is necessary in order to ensure that oscillations remain in the thermodynamic limit. The roles of surface diffusion of the reactants versus direct adsorption from the gas phase, at the onset of selforganization and synchronized behavior, is a topic which merits further investigation. [Pg.430]

For catalytic reactions carried out in the presence of a heterogeneous catalyst, the observed reaction rate could be determined by the rate of mass transfer from the bulk of the reaction mixture and the outer surface of the catalyst particles or the rate of diffusion of reactants within the catalyst pores. Consider a simple first order reaction its rate must be related to the concentration of species S at the outer surface of the catalyst as follows ... [Pg.280]

If diffusion of reactants to the active sites in pores is slower than the chemical reaction, internal mass transfer is at least partly limiting and the reactant concentration decreases along the pores. This reduces the reaction rate compared to the rate at external surface conditions. A measure of the reaction rate decrease is the effectiveness factor, r, which has been defined as ... [Pg.286]

The selectivity in a system of parallel reactions does not depend much on the catalyst size if effective diffusivities of reactants, intermediates, and products are similar. The same applies to consecutive reactions with the product desired being the final product in the series. In contrast with this, for consecutive reactions in which the intermediate is the desired product, the selectivity much depends on the catalyst size. This was proven by Edvinsson and Cybulski (1994, 1995) for. selective hydrogenations and also by Colen et al. (1988) for the hydrogenation of unsaturated fats. Diffusion limitations can also affect catalyst deactivation. Poisoning by deposition of impurities in the feed is usually slower for larger particles. However, if carbonaceous depositions are formed on the catalyst internal surface, ageing might not depend very much on the catalyst size. [Pg.388]

The surface diffusion of defects and adsorbates is of obvious importance in heterogeneous catalysis, as this process brings the reactants together. Understanding the dynamics of molecules on oxide surfaces is also a key step toward the realization of working molecular electronics. We note here that diffusion of Ob-vacs really means diffusion of Ob into the vacancy, which leaves another Ob-vac in the position vacated by the Ob- Similarly, diffusion of OHb occurs by diffusion of the H atom. [Pg.232]

The obvious technological advantage of a heterogeneous catalyst is that it can be easily separated from reactants and products. However, the serious physical problem is diffusion of reactants to active centers on the surface of the catalyst and back diffusion of the formed intermediate and final products from the surface into the solution. This duffusion occurs much more slowly in the liquid phase compared to the gas phase. The problem of effectiveness of the heterogeneous catalyst in comparison with the homogeneous catalyst is closely connected with the problem of diffusion and sorption on the surface in the liquid phase. [Pg.421]

Dioxygen and oxidized substances react on the surface of the catalyst only. The pure heterogeneous reaction occurs only after diffusion of reactants to the catalytic surface and back diffusion of products from the surface into the solution. A combination of a few mechanisms of such types are possible. [Pg.421]

These results take into account three possible processes in series mass transfer of fluid reactant A from bulk fluid to particle surface, diffusion of A through a reacted product layer to the unreacted (outer) core surface, and reaction with B at the core surface any one or two of these three processes may be rate-controlling. The SPM applies to particles of diminishing size, and is summarized similarly in equation 9.1-40 for a spherical particle. Because of the disappearance of the product into the fluid phase, the diffusion process present in the SCM does not occur in the SPM. [Pg.553]

SOFC electrodes are commonly produced in two layers an anode or cathode functional layer (AFL or CFL), and a current collector layer that can also serve as a mechanical or structural support layer or gas diffusion layer. The support layer is often an anode composite plate for planar SOFCs and a cathode composite tube for tubular SOFCs. Typically the functional layers are produced with a higher surface area and finer microstructure to maximize the electrochemical activity of the layer nearest the electrolyte where the reaction takes place. A coarser structure is generally used near the electrode surface in contact with the current collector or interconnect to allow more rapid diffusion of reactant gases to, and product gases from, the reaction sites. A typical microstructure of an SOFC cross-section showing both an anode support layer and an AFL is shown in Figure 6.4 [24],... [Pg.248]

External diffusion of reactants. This step depends on the fluid dynamic characteristics of the system. Reactants must first diffuse from the bulk gaseous phase to the outer surface of the carrier through a stagnant thin film of gas. Molecular diffusion rates in the bulk have the activation energy E1 = 2 to 4 kcal/mol and they vary with Tm. [Pg.199]

The systematic representation of the time dependence of chemical reactions occurring at an electrode surface. These reactions can be analyzed as a succession of events (a) diffusion of reactants within the bulk solution to the more condensed layer of solution near the electrode surface (b) penetration of that layer to achieve adsorption on the electrode s surface (c) electron transfer to (i.e., reduction) or from oxidation) the adsorbed reactant(s) product desorption, penetration of the condensed layer, and diffusion into the bulk solution. [Pg.222]

Step 1. Diffusion of reactant A from the main body of gas through the gas film to the surface of the solid. [Pg.577]


See other pages where Surface diffusion of reactant is mentioned: [Pg.2926]    [Pg.29]    [Pg.250]    [Pg.2926]    [Pg.53]    [Pg.2926]    [Pg.29]    [Pg.250]    [Pg.2926]    [Pg.53]    [Pg.1]    [Pg.507]    [Pg.508]    [Pg.399]    [Pg.413]    [Pg.416]    [Pg.253]    [Pg.275]    [Pg.53]    [Pg.194]    [Pg.440]    [Pg.263]    [Pg.127]    [Pg.16]    [Pg.236]    [Pg.438]    [Pg.111]    [Pg.233]    [Pg.145]    [Pg.156]    [Pg.395]    [Pg.232]    [Pg.117]    [Pg.3]    [Pg.744]    [Pg.49]    [Pg.77]    [Pg.291]   
See also in sourсe #XX -- [ Pg.250 ]




SEARCH



Diffuse surface

Diffusion of reactants

Surface diffusion

Surface diffusion Diffusivity

Surface diffusivity

© 2024 chempedia.info