Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PROTEINS SUPRAMOLECULAR STRUCTURE

Given the actual scenario, one can state that the emerging field of nanotechnology represents new effort to exploit new materials as well as new technologies in the development of efficient and low-cost solar cells. In fact, the technological capabilities to manipulate matter under controlled conditions in order to assemble complex supramolecular structures within the range of 100 nm could lead to innovative devices (nano-devices) based on unconventional photovoltaic materials, namely, conducting polymers, fuUerenes, biopolymers (photosensitive proteins), and related composites. [Pg.199]

SUPRAMOLECULAR ASSEMBLIES MADE OF NATURAL STRUCTURAL PROTEINS... [Pg.462]

The rational synthesis of peptide-based nanotubes by self-assembling of polypeptides into a supramolecular structure was demonstrated. This self-organization leads to peptide nanotubes, having channels of 0.8 nm in diameter and a few hundred nanometer long (68). The connectivity of the proteins in these nanotubes is provided by weak bonds, like hydrogen bonds. These structures benefit from the relative flexibility of the protein backbone, which does not exist in nanotubes of covalently bonded inorganic compounds. [Pg.291]

Photodynamic treatment equally affects viral particles and protein components in biological fluid, but virions, being large supramolecular structures, are more vulnerable compared to protein molecules. For this reason, damage to one of the components of a virion leads to inactivation of the entire viral particle without affecting the growth properties of semm or the electrophoretic pattern of the proteins. [Pg.120]

Noncovalent interactions in metal complexes of biomolecules may play an important role in the creation of supramolecular structures around the metal center. For instance, extensive three-dimensional hydrogen-bonded stmcmres grow around metal complexes of barbiturates, recognized as the most widely used drugs for the treatment of epilepsy.Electrostatic interactions between a cation and the Trring of an aromatic molecule (cation-tt interactions) are common motifs in protein structures. Little is known about alkali and alkali-earth cation-tt inter-... [Pg.154]

Microtubules in the cytoskeleton and mitotic apparatus are also in a state of dynamic equilibrium and flux with unpolymerized tubulin, and tubulin appears to be an excellent example of the proteins which Pauling (1953) postulated to exist as globular protomers or as insoluble, fibrous, supramolecular structures akin to unpolymerized and polymeric hemoglobin S. The current view of the microtubule cytoskeleton in nondividing celb comes from the development of tubulin-specific antibodies for indirect immunofluorescent localization of microtubules (Fuller et al., 1975 Weber et al., 1975). The general structural features of such cyto-... [Pg.135]

As illustrated in the diagram below, domain swapping can also result in indefinite polymerization to form linear supramolecular structures. These may correspond to present-day polymers of proteins such as microtubules, or they may represent abnormal structures, like the straight and paired-helical filaments in the neurofibrillary tangles observed in the brain tissue of those afflicted with Alzheimer s disease. [Pg.214]

Self-organization systems under thermodynamic control (spontaneous processes with a negative free-energy change), such as supramolecular complexes, crystallization, surfactant aggregation, certain nano-structures, protein folding, protein assembly, DNA duplex. [Pg.109]

We further addressed the use of the nucleic acids as biopolymers for the formation of supramolecular structures that enable the electronic or electrochemical detection of DNA. Specifically, we discussed the use of aptamer/low-molecular-weight molecules or aptamer/protein supramolecular complexes for the electrical analysis of the guest substrates in these complexes. Also, nucleic acid-NPs hybrid systems hold a great promise as sensing matrices for the electrical detection of DNA in composite three-dimensional assemblies. While sensitive and selective electrochemical sensors for DNA were fabricated, the integration of these sensor configurations in array formats (DNA chips) for the multiplexed analysis of many DNAs can also be envisaged. [Pg.372]

Bifunctional imidoesters such as dimethylsuberimidate may be used to establish whether or not two different proteins or subunits are close together in a complex or in a supramolecular structure such as a membrane or ribosome. [Pg.125]

According to Owusu and Makhzoum (20) AH values of about 200-300kJ/mol would lead to unfolding of the tertiary structure of a protein. However, the Dowex-lx4-200/invertase complex had a AH 37% lower than these values, indicating that the declining invertase activity vs temperature is probably owing to the breakup of the supramolecular structures of invertase rather than to the irreversible unfolding of the macromolecular tertiary structure. [Pg.155]

The protein folding, notorious for an astronomic number of possible conformations, is only an example of the multiple minima problem, inherently connected to all applications of theory to structural chemistry (isomers, supramolecular structures etc.). The multiple minima problem is also virtually ubiquitous in other sciences, and whenever a mathematical description is used, the situation is encountered more and more often. Despite the complexity of the protein folding, remarkable achievements in the prediction of the 3D structure of globular proteins are possible nowadays. [Pg.145]

Biological macromolecules such as DNA and proteins are typical polyelectrolytes, which further hierarchically self-assemble into complicated supramolecular structures such as coiled coil (helix bundle) superstructures, which are responsible for their sophisticated functions [152,153]. Therefore, with implications for biological superstructures and functions, the design and synthesis of supramolecular helical assemblies with a controlled helicity have attracted great interest. [Pg.80]

Terran life uses water as a solvent. As expected, terran biomolecules have multiple signatures of their compatibility with water as a solvent. Further, terran biochemistry exploits the distinction between polar molecules, which are soluble in water, and nonpolar molecules, which are not. This is exemplified in the use of hydrophobic interactions as a way to fold proteins and organize supramolecular structures, inter alia. [Pg.43]

Although proteins are large molecules they are small compared with a cell and even with supramolecular structures which may be part of a cell, such as plasma and organelle membranes, ribosomes, chromosomes, filaments, enzyme complexes and viruses (Chap. 1). Supramolecular structures are also prominent outside cells and are, for example, essential components of connective tissues such as tendon, ligament, cartilage and bone. Supramolecular structures can consist of a variety of different types of molecule from the small (such as membrane lipids) to macromolecules (such as proteins, DNA and RNA). [Pg.108]

This Chapter will highlight some of the features relating to the structure and construction of supramolecular structures that are primarily protein based. Examples of supramolecular structures found outside cells (extracellular matrices) and within cells (cytoskeletal networks) will be given that emphasize the relationships between the structure and function of these networks, the role of their frequently dynamic nature, and the genetic and congenital errors that can lead to, or be associated with, disease. [Pg.108]

Many supramolecular structures are formed largely by the stepwise noncovalent association of macromolecules, such as proteins. The processes of assembly are governed by the same chemical and physical principles that govern protein folding and the formation of quaternary structures (see Chap. 4). The driving force for the assembly process generally depends on the formation of a multitude of relatively weak hydrophobic, hydrogen and ionic bonds that occur between complementary sites on subunits which are in van der Waals contact with each other. In addition, covalent... [Pg.108]


See other pages where PROTEINS SUPRAMOLECULAR STRUCTURE is mentioned: [Pg.185]    [Pg.338]    [Pg.364]    [Pg.214]    [Pg.246]    [Pg.795]    [Pg.713]    [Pg.227]    [Pg.1062]    [Pg.206]    [Pg.92]    [Pg.137]    [Pg.130]    [Pg.550]    [Pg.335]    [Pg.357]    [Pg.107]    [Pg.207]    [Pg.143]    [Pg.303]    [Pg.125]    [Pg.47]    [Pg.74]    [Pg.97]    [Pg.3]    [Pg.124]    [Pg.33]    [Pg.547]    [Pg.47]    [Pg.100]    [Pg.321]    [Pg.108]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Supramolecular structures

Supramolecular structuring

© 2024 chempedia.info