Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supported metals clay supports

In this article, we will discuss the use of physical adsorption to determine the total surface areas of finely divided powders or solids, e.g., clay, carbon black, silica, inorganic pigments, polymers, alumina, and so forth. The use of chemisorption is confined to the measurements of metal surface areas of finely divided metals, such as powders, evaporated metal films, and those found in supported metal catalysts. [Pg.737]

The first examples of cationic exchange of bis(oxazoline)-metal complexes used clays as supports [49,50]. Cu(II) complexes of ligands ent-6a, 6b, and 6c (Fig. 15) were supported on three different clays laponite (a synthetic clay), bentonite, and montmorillonite KIO. The influence of the copper salt from which the initial complexes were prepared, as well as that of the solvent used in the cationic exchange, was analyzed. [Pg.174]

Catalysts can be metals, oxides, sulfides, carbides, nitrides, acids, salts, virtually any type of material. Solid catalysts also come in a multitude of forms and can be loose particles, or small particles on a support. The support can be a porous powder, such as aluminium oxide particles, or a large monolithic structure, such as the ceramics used in the exhaust systems of cars. Clays and zeolites can also be solid catalysts. [Pg.167]

Concerning other metals, Sonogashira coupling products have also been observed in the reaction of Ag(l)-carbenes [133] and Au(I)-supported carbenes [134] in low to moderate yields, but only under harsh conditions (more than 100°C). In this regard, NHC based catalysts for Sonogashira reactions have been supported on different materials that include clays [135], polymers [136] and peptides [137]. [Pg.180]

Metallic nitrates, supported on clays, have been used for nitrations and oxidations. Recent interesting studies involve nitration of 4-hydroxybenzaldehyde with Fe nitrate and KIO montmori I Ionite, in which nuclear nitration was preferentially realized and practically no oxidation of the aldehyde occurred. Even more interesting, simple addition of Fe nitrate to dealuminated or natural clay gave comparable or even better results. A 100% yield was realized at 60 °C with toluene as the solvent (Bekassy et al., 1998). [Pg.170]

Various other classes of catalysts have been investigated for NH3-SCR, in particular, metal-containing clays and layered materials [43 15] supported on active carbon [46] and micro- and meso-porous materials [31b,47,48], the latter also especially investigated for HC-SCR [25,3lb,48-53], However, while for NH3-SCR, either for stationary or mobile applications, the performances under practical conditions of alternative catalysts to V-W-oxides supported on titania do not justify their commercial use if not for special cases, the identification of a suitable catalyst, or combination of catalysts, for HC-SCR is still a matter of question. In general terms, supported noble metals are preferable for their low-temperature activity, centred typically 200°C. As commented before, low-temperature activity is a critical issue. However, supported noble metals have a quite limited temperature window of operation. [Pg.4]

Other metal oxide catalysts studied for the SCR-NH3 reaction include iron, copper, chromium and manganese oxides supported on various oxides, introduced into zeolite cavities or added to pillared-type clays. Copper catalysts and copper-nickel catalysts, in particular, show some advantages when NO—N02 mixtures are present in the feed and S02 is absent [31b], such as in the case of nitric acid plant tail emissions. The mechanism of NO reduction over copper- and manganese-based catalysts is different from that over vanadia—titania based catalysts. Scheme 1.1 reports the proposed mechanism of SCR-NH3 over Cu-alumina catalysts [31b],... [Pg.13]

When supported complexes are the catalysts, two types of ionic solid were used zeolites and clays. The structures of these solids (microporous and lamellar respectively) help to improve the stability of the complex catalyst under the reaction conditions by preventing the catalytic species from undergoing dimerization or aggregation, both phenomena which are known to be deactivating. In some cases, the pore walls can tune the selectivity of the reaction by steric effects. The strong similarities of zeolites with the protein portion of natural enzymes was emphasized by Herron.20 The protein protects the active site from side reactions, sieves the substrate molecules, and provides a stereochemically demanding void. Metal complexes have been encapsulated in zeolites, successfully mimicking metalloenzymes for oxidation reactions. Two methods of synthesis of such encapsulated/intercalated complexes have been tested, as follows. [Pg.447]

The preparation of this type of catalyst is quite simple. HPAs such as phos-photungstic acid were adsorbed onto inorganic supports such as clays, alumina, and active carbon. Subsequently, the metal complex was added to form the immobilized catalyst. If necessary, the catalyst can be pre-reduced. These types of catalysts were developed mainly for enantioselective hydrogenations. For instance, a supported chiral catalyst that was based on a cationic Rh(DIPAMP) complex, phosphotungstic acid and alumina showed an ee-value of 93% with a TOF of about 100 IT1 in the hydrogenation of 2-acetamidoacrylic acid methyl ester (Fig. 42.4 Table 42.2). [Pg.1429]

The most significant class of inorganic supports, which is used for the direct ion exchange of positively charged transition-metal complexes, are smectite clays. Pin-navaia has introduced the use of these swelling, layered silicate clays for catalysis. Other clays include montmorillonite, bentonite, and laponite. As shown by Pinna-vaia, cationic transition-metal complexes can be readily exchanged (intercalated) into the solvated interlayers of these silicates (Eq. (1)) [117] ... [Pg.1455]

Metal nitrates supported on various acidic clays have been used as nitrating agents for some reactive aromatic substrates in attempts to improve product isomer ratios." ... [Pg.143]

Finally, clays can be used as supports for other catalysts such as platinum metal or aluminum chloride, largely to facilitate recovery of the catalyst from a liquid after reaction (e.g., by filtration). [Pg.142]

Cleavage of dithioacetals by clay-supported metal nitrates 15... [Pg.110]


See other pages where Supported metals clay supports is mentioned: [Pg.11]    [Pg.731]    [Pg.2760]    [Pg.730]    [Pg.95]    [Pg.164]    [Pg.353]    [Pg.96]    [Pg.583]    [Pg.65]    [Pg.115]    [Pg.461]    [Pg.454]    [Pg.59]    [Pg.345]    [Pg.1458]    [Pg.517]    [Pg.194]    [Pg.29]    [Pg.565]    [Pg.277]    [Pg.214]    [Pg.34]    [Pg.371]    [Pg.726]    [Pg.92]    [Pg.184]    [Pg.572]    [Pg.721]    [Pg.1157]    [Pg.1174]    [Pg.16]    [Pg.323]    [Pg.435]    [Pg.885]   
See also in sourсe #XX -- [ Pg.300 ]




SEARCH



Clays metal catalyst supports

© 2024 chempedia.info