Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supported Metal Catalyst Materials

This is explained by a possible higher activity of pure rhodium than supported metal catalysts. However, two other reasons are also taken into account to explain the superior performance of the micro reactor boundary-layer mass transfer limitations, which exist for the laboratory-scale monoliths with larger internal dimensions, are less significant for the micro reactor with order-of-magnitude smaller dimensions, and the use of the thermally highly conductive rhodium as construction material facilitates heat transfer from the oxidation to the reforming zone. [Pg.326]

Supported metal catalysts, M°/S, are typically two-components materials built up with a nanostructured metal component, in which the metal centre is in the zero oxidation state (M°), and with an inorganic support (S), quite various in its chemical and structural features [1], M° is the component typically deputed to the electronic activation of the reagents involved in the catalyzed reactions. S is typically a microstructured component mainly deputed to the physical support and to the dispersion of M° nanoclusters. [Pg.201]

Corain and associates on M /CFP catalysts has been so far focused on this kind of materials. In particular, great attention was paid to the correlation between the morphology of the support and features of CFPs supported metal catalysts, such as their molecular accessibility [14,21,22,25,108] or the size of metal nanoclusters generated inside swollen polymer frameworks (for a specific study see Ref [68]). [Pg.212]

A wide variety of solid materials are used in catalytic processes. Generally, the (surface) structure of metal and supported metal catalysts is relatively simple. For that reason, we will first focus on metal catalysts. Supported metal catalysts are produced in many forms. Often, their preparation involves impregnation or ion exchange, followed by calcination and reduction. Depending on the conditions quite different catalyst systems are produced. When crystalline sizes are not very small, typically > 5 nm, the metal crystals behave like bulk crystals with similar crystal faces. However, in catalysis smaller particles are often used. They are referred to as crystallites , aggregates , or clusters . When the dimensions are not known we will refer to them as particles . In principle, the structure of oxidic catalysts is more complex than that of metal catalysts. The surface often contains different types of active sites a combination of acid and basic sites on one catalyst is quite common. [Pg.94]

The mercury penetration approach is based on the fact that liquid mercury has a very high surface tension and the observation that mercury does not wet most catalyst surfaces. This situation holds true for oxide catalysts and supported metal catalysts that make up by far the overwhelming majority of the porous commercial materials of interest. Since mercury does not wet such surfaces, the pressure required to force mercury into the pores will depend on the pore radius. This provides a basis for measuring pore size distributions through measurements of the... [Pg.195]

In many cases there is an interaction between the carrier and the active component of the catalyst so that the character of the active surface will change. For example, the electronic character of the supported catalyst may be influenced by the transfer of electrons across the catalyst-carrier interface. In some cases the carrier itself has a catalytic activity for the primary reaction, an intermediate reaction, or a subsequent reaction, and a dual-function catalyst is thereby obtained. Materials of this type are widely employed in reforming processes. There are other cases where the interaction of the catalyst and support are much more subtle and difficult to label. For example, the crystal size and structure of supported metal catalysts as well as the manner in which the metal is dispersed can be influenced by the nature of the support material. [Pg.200]

An alternative approach for the preparation of supported metal catalysts is based on the use of a microwave-generated plasma [27]. Several new materials prepared by this method are unlikely to be obtained by other methods. It is accepted that use of a microwave plasma results in a unique mechanism, because of the generation of a nonthermodynamic equilibrium in discharges during catalytic reactions. This can lead to significant changes in the activity and selectivity of the catalyst. [Pg.350]

The regeneration of deactivated immobilized catalysts is not as easy as with conventional supported metal catalysts, where combustion of the deposited material is frequently used. Because such a procedure would destroy the organic ligands, one must resort to washing procedures. However, when this method fails, attempts must be made to recover the metal and the ligand, and to prepare a fresh catalyst. In principle, it is possible to recover the metal complexes from physically and ionically immobilized catalysts. This can also be done from covalently bound catalysts by using an easily hydrolyzable linker. [Pg.1462]

The use of EM (except in the special case of SEM) demands that the catalyst, whether mono-or multi-phasic, be thin enough to be electron transparent. But, as we show below, this seemingly severe condition by no means restricts its applicability to the study of metals, alloys, oxides, sulfides, halides, carbons, and a wide variety of other materials. Most catalyst powder preparations and supported metallic catalysts, provided that representative thin regions are selected for characterization, are found to be electron transparent and thus amenable to study by EM without the need for further sample preparation. [Pg.198]

Aspects of the distribution of species on surfaces have been reviewed (35) and our understanding of the disposition, composition, and properties of the adsorbed phase is increasing through applications of recently developed high-vacuum techniques, for example, LEED (60, 61). Some information about the mobility of adsorbed material is available (62a-e) and the significance of surface diffusivity in reaction kinetics has been discussed (63). The behavior of supported metal catalysts may be influenced by the transfer of material between the two phases (metal and support) by diffusion (64-66). [Pg.258]

Supported catalysts can be prepared in several ways [12], but the simplest is that of impregnation. A support has a characteristic pore volume (e.g., 0.5 mL g-1) hence, adding this volume of a solution containing the appropriate amount of a convenient catalyst precursor (e.g., nickel nitrate in water to prepare a supported nickel catalyst) to the support will simply fill all the pores. However, by allowing the system to dry, and then heating it in air to decompose any undesired salts, the supported material will be converted to the oxidic form. Reduction in hydrogen then converts the oxidic precursor - at least partially - into a supported metal catalyst. [Pg.3]


See other pages where Supported Metal Catalyst Materials is mentioned: [Pg.400]    [Pg.400]    [Pg.2702]    [Pg.246]    [Pg.216]    [Pg.36]    [Pg.211]    [Pg.214]    [Pg.219]    [Pg.227]    [Pg.16]    [Pg.244]    [Pg.279]    [Pg.428]    [Pg.300]    [Pg.403]    [Pg.8]    [Pg.254]    [Pg.537]    [Pg.154]    [Pg.375]    [Pg.244]    [Pg.152]    [Pg.177]    [Pg.185]    [Pg.92]    [Pg.106]    [Pg.793]    [Pg.126]    [Pg.34]    [Pg.3]    [Pg.284]    [Pg.2]    [Pg.17]    [Pg.46]    [Pg.178]    [Pg.382]    [Pg.507]   


SEARCH



Catalyst materials

Materials metal catalyst

Materials metals

Metal NPs Supported in G-Based Materials as Catalyst for Coupling Reactions

Metal NPs Supported in G-Based Materials as Catalyst for Hydrogen Release

Metallic Catalysts Supported on Amorphous Materials

Propane supported metal catalyst material

Support material

Supported metal catalysts

Supporting material

© 2024 chempedia.info