Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superposition spectra

Based on the data in Table 1 ( H)- C superposition spectra for a fixed contact time (tcp = 1 ms) are calculated for a variety of rotational correlation times (Fig. 7). [Pg.223]

A microwave pulse from a tunable oscillator is injected into the cavity by an anteima, and creates a coherent superposition of rotational states. In the absence of collisions, this superposition emits a free-mduction decay signal, which is detected with an anteima-coupled microwave mixer similar to those used in molecular astrophysics. The data are collected in the time domain and Fourier transfomied to yield the spectrum whose bandwidth is detemimed by the quality factor of the cavity. Hence, such instruments are called Fourier transfomi microwave (FTMW) spectrometers (or Flygare-Balle spectrometers, after the inventors). FTMW instruments are extraordinarily sensitive, and can be used to examine a wide range of stable molecules as well as highly transient or reactive species such as hydrogen-bonded or refractory clusters [29, 30]. [Pg.1244]

For bound state systems, eigenfunctions of the nuclear Hamiltonian can be found by diagonalization of the Hamiltonian matiix in Eq. (11). These functions are the possible nuclear states of the system, that is, the vibrational states. If these states are used as a basis set, the wave function after excitation is a superposition of these vibrational states, with expansion coefficients given by the Frank-Condon overlaps. In this picture, the dynamics in Figure 4 can be described by the time evolution of these expansion coefficients, a simple phase factor. The periodic motion in coordinate space is thus related to a discrete spectrum in energy space. [Pg.264]

There is a small peak one mass unit higher than M m the mass spectrum of ben zene What is the origin of this peak d What we see m Figure 13 40 as a single mass spectrum is actually a superposition of the spectra of three isotopically distinct benzenes Most of the benzene molecules contain only and H and have a molecular mass of 78 Smaller proportions of benzene molecules contain m place of one of the atoms or m place of one of the protons Both these species have a molecular mass of 79... [Pg.569]

IR spectroscopy is an inherently faster method than NMR and an IR spectrum is a superposition of the spectra of the various conformations rather than an average of them When 1 2 dichloroethane is cooled below its freezing point the crystalline matenal gives an IR spectrum consistent with a single species that has a center of symmetry At room temperature the IR spec trum of liquid 1 2 dichloroethane retains the peaks present in the solid but includes new peaks as well Explain these observations... [Pg.586]

Figure 1.8. Homonuclear decoupling of the CH protons of 3-aminoacrolein (CDaOD, 25 C, 90 MHz), (a) H NMR spectrum (b) decoupling at Sh = 8.5 (c) decoupling at = 7.3. At the position of the decoupled signal in (b) and (c) interference beats are observed because of the superposition of the two very similar frequencies... Figure 1.8. Homonuclear decoupling of the CH protons of 3-aminoacrolein (CDaOD, 25 C, 90 MHz), (a) H NMR spectrum (b) decoupling at Sh = 8.5 (c) decoupling at = 7.3. At the position of the decoupled signal in (b) and (c) interference beats are observed because of the superposition of the two very similar frequencies...
This compound has two crystallographically distinct vanadium sites. While the static spectrum is a superposition of two powder patterns of the kind shown in Figure 3, MAS leads to well-resolved sharp resonances. Weak peaks denoted by asterisks are spinning sidebands due to the quadrupolar interaction. [Pg.468]

A sound is generally not a pure tone, as the latter is only emitted from particular sources. It can be demonstrated that a sound can be divided into different pure tones (superposition method). The waves at different frequencies give the spectrum of the sound, which also describes its energy distribution. In frequency analysis, the spectrum is divided into octave bands. An octave band is defined as the frequency range with its upper boundary twice the frequency of its lower boundary. For every octave band, a central band frequency ( f. ) is defined as follows ... [Pg.793]

Now consider the case where the system is perturbed randomly in space and time and F(t) represents a superposition of many avalanches (occurring simulta-neou.sly and independently). The total power spectrum is the (incoherent) sum of individual ( ontributions for single relaxation event due to single perturbations. [Pg.442]

Figure 15-3 shows the optical absorption spectrum of a MEH-PPV/C60 film with different C, content compared to the optical absorption spectrum of the components alone. The peak at 2.5 eV is identified as the n-n absorption of MEH-PPV and is clearly observed along with the first dipole-allowed transition in C(l0 (at 3.75 eV). The spectrum is a simple superposition of the two components. Further-... [Pg.272]

Fig. 1-19. The sulfur Ka spectrum from a series of compounds containing sulfur at different valences. The triplet in all the polythionates results from the superposition of the al, a2 doublets of sulfur at two different valences. (Courtesy of Faessler and Goehring, N aturwissenschaften, 39, 169.)... Fig. 1-19. The sulfur Ka spectrum from a series of compounds containing sulfur at different valences. The triplet in all the polythionates results from the superposition of the al, a2 doublets of sulfur at two different valences. (Courtesy of Faessler and Goehring, N aturwissenschaften, 39, 169.)...
Fig. 4-2. Continuous spectrum from a massive target obtained by superposition of spectra from thin targets. (After Compton and Allison, X-rays in Theory and Experiment D. Van Nostrand Co.)... Fig. 4-2. Continuous spectrum from a massive target obtained by superposition of spectra from thin targets. (After Compton and Allison, X-rays in Theory and Experiment D. Van Nostrand Co.)...
Kira and coworkers25 found that in deaerated DMSO solution of frans-stilbene both the solute cation and anion are produced and the anions are eliminated by aeration. Since they found26 that the absorption spectra of the anthracene cation and anion are quite similar, they suggested25 that the absorption spectrum observed by Hayon for anthracene solution in DMSO is a superposition of the spectra of the solute cation and anion. This observation casts a serious question on the yield of solvated electrons found by Hayon23. [Pg.895]

What Is Interferometry (1.3) Interferometry deals with the physical phenomena which result from the superposition of electromagnetic (e.m.) waves. Practically, interferometry is used throughout the electromagnetic spectrum astronomers use predominantly the spectral regime from radio to the near UV. Essential to interferometry is that the radiation emerges from a single source and travels along different paths to the point where it is detected. The spatio-temporal coherence characteristics of the radiation is studied with the interferometer to obtain information about the physical nature of the source. [Pg.276]

The fringes contrasts are subject to degradation resulting from dissymmetry in the interferometer. The optical fields to be mixed are characterized by a broadband spectrum so that differential dispersion may induce a variation of the differential phase over the spectrum. Detectors are sensitive to the superposition of the different spectral contributions. If differential dispersion shifts the fringes patterns for the different frequency, the global interferogramme is blurred and the contrast decreases. Fig. 5 shows corresponding experimental results. [Pg.295]

Fig. 31 Evolution of the Raman spectra of a high-pressure and photo-induced sample of Se while decreasing the pressure at ca. 300 K [109]. The spectrum at 3.9 GPa shows the onset of the transformation S6 p-S. The asterisks indicate the Raman signals typical for p-S whereas the peaks of two stretching vibrations of p-S coincide with those of Se at about 458 cm and 471 cm (not indicated by asterisks). The Raman spectrum of the sample recovered at ambient pressure (0 GPa) is evidently a superposition of the spectra of a-Sg and polymeric sulfur, Sj, arrows indicate plasma lines of the Ar ion laser at 515 nm, which have been used for calibration). For Raman spectra under increasing pressure, see Fig. 23 in [1] and references cited therein... Fig. 31 Evolution of the Raman spectra of a high-pressure and photo-induced sample of Se while decreasing the pressure at ca. 300 K [109]. The spectrum at 3.9 GPa shows the onset of the transformation S6 p-S. The asterisks indicate the Raman signals typical for p-S whereas the peaks of two stretching vibrations of p-S coincide with those of Se at about 458 cm and 471 cm (not indicated by asterisks). The Raman spectrum of the sample recovered at ambient pressure (0 GPa) is evidently a superposition of the spectra of a-Sg and polymeric sulfur, Sj, arrows indicate plasma lines of the Ar ion laser at 515 nm, which have been used for calibration). For Raman spectra under increasing pressure, see Fig. 23 in [1] and references cited therein...
Another example is provided by [30] anmlene. Longuet-Higgins and Salem have shown that the observed visible and UV absorption spectrum and, in particular, the NMR proton chemical shifts of this molecule are very difficult to reconcile with the symmetrical nuclear configuration (Dg ) suggested by the superposition of the Kekule-type resonance structures. The hypothesis of a bond-length alternation of symmetry removes this difficulty. This indicates that the resonance between Kekule-type structures should be very much impeded also in this molecule. [Pg.6]

Most Mossbauer spectra are split because of the hyperfine interaction of the absorber (or source) nuclei with their electron shell and chemical environment which lifts the degeneracy of the nuclear states. If the hyperfine interaction is static with respect to the nuclear lifetime, the Mossbauer spectrum is a superposition of separate lines (i), according to the number of possible transitions. Each line has its own effective thickness t i), which is a fraction of the total thickness, determined by the relative intensity W of the lines, such that t i) = Wit. [Pg.21]

For the NFS spectrum of [Fe(tpa)(NCS)2] recorded at 108 K, which exhibits a HS to LS ratio of about 1 1, a coherent and an incoherent superposition of the forward scattered radiation from 50% LS and 50% HS isomers was compared, each characterized by its corresponding QB pattern (Fig. 9.16) [42]. The experimental spectrum correlates much better with a purely coherent superposition of LS and HS contributions. However, this observation does not yield the unequivocal conclusion that the superposition is purely coherent, because in the 0.5 mm thick sample the longitudinal coherence predominates since many HS and LS domains lie along the forward scattering pathway. In order to arrive at a more conclusive result, the NFS measurement ought to be performed with a smaller ratio aJD on a much thinner sample. Such an experiment would require a sample with 100% eiuiched Fe and a much higher beam intensity. [Pg.494]

We now consider the formation of a composite wave as the superposition of a continuous spectrum of plane waves with wave numbers k confined to a narrow band of values. Such a composite wave (x, /) is known as a wave packet and may be expressed as... [Pg.8]


See other pages where Superposition spectra is mentioned: [Pg.136]    [Pg.149]    [Pg.595]    [Pg.95]    [Pg.32]    [Pg.33]    [Pg.255]    [Pg.138]    [Pg.170]    [Pg.173]    [Pg.330]    [Pg.171]    [Pg.375]    [Pg.105]    [Pg.384]    [Pg.912]    [Pg.27]    [Pg.276]    [Pg.118]    [Pg.308]    [Pg.319]    [Pg.513]    [Pg.513]    [Pg.912]    [Pg.126]    [Pg.132]    [Pg.138]    [Pg.130]    [Pg.207]    [Pg.1006]    [Pg.73]   


SEARCH



Superpositioning

Superpositions

© 2024 chempedia.info