Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superposition of states

Quantum Cellular Automata (QCA) in order to address the possibly very fundamental role CA-like dynamics may play in the microphysical domain, some form of quantum dynamical generalization to the basic rule structure must be considered. One way to do this is to replace the usual time evolution of what may now be called classical site values ct, by unitary transitions between fe-component complex probability- amplitude states, ct > - defined in sncli a way as to permit superposition of states. As is standard in quantum mechanics, the absolute square of these amplitudes is then interpreted to give the probability of observing the corresponding classical value. Two indepcuidently defined models - both of which exhibit much of the typically quantum behavior observed in real systems are discussed in chapter 8.2,... [Pg.52]

We use a7r/2 — vr — vr/2 pulse sequence to coherently divide, deflect and finally recombine an atomic wavepacket. The first vr/2 pulse excites an atom initially in the l,p) state into a coherent superposition of states l,p) and 2,p + hkeff). If state 2) is stable against spontaneous decay, the two parts of the wavepacket will drift apart by a distance hkT/m in time T. Each partial wavepacket is redirected by a vr pulse which induces the transitions... [Pg.360]

From the point of view of the study of dynamics, the laser has three enormously important characteristics. Firstly, because of its potentially great time resolution, it can act as both the effector and the detector for dynamical processes on timescales as short as 10 - s. Secondly, due to its spectral resolution and brightness, the laser can be used to prepare large amounts of a selected quantum state of a molecule so that the chemical reactivity or other dynamical properties of that state may be studied. Finally, because of its coherence as a light source the laser may be used to create in an ensemble of molecules a coherent superposition of states wherein the phase relationships of the molecular and electronic motions are specified. The dynamics of the dephasing of the molecular ensemble may subsequently be determined. [Pg.469]

The applications of NN to solvent extraction, reported in section 16.4.6.2., suffer from an essential limitation in that they do not apply to processes of quantum nature therefore they are not able to describe metal complexes in extraction systems on the microscopic level. In fact, the networks can describe only the pure state of simplest quantum systems, without superposition of states. Neural networks that indirectly take into account quantum effects have already been applied to chemical problems. For example, the combination of quantum mechanical molecular electrostatic potential surfaces with neural networks makes it possible to predict the bonding energy for bioactive molecules with enzyme targets. Computational NN were employed to identify the quantum mechanical features of the... [Pg.707]

Ultrafast laser excitation gives excited systems prepared coherently, as a coherent superposition of states. The state wave function (aprobabihty wave) is a coherent sum of matter wave functions for each molecule excited. The exponential terms in the relevant time-dependent equation, the phase factors, define phase relationships between constituent wave functions in the summation. [Pg.905]

The matter wave function is formed as a coherent superposition of states or a state ensemble, a wave packet. As the phase relationships change the wave packet moves, and spreads, not necessarily in only one direction the localized launch configuration disperses or propagates with the wave packet. The initially localized wave packets evolve like single-molecule trajectories. [Pg.905]

This experimental work on the dissociation of excited Nal clearly demonstrated behavior one could describe with the vocabulary and concepts of classical motions.The incoherent ensemble of molecules just before photoexcitation with a femtosecond laser pump pulse was transformed through the excitation into a coherent superposition of states, a wave packet that evolved as though it represented a single vibrationally activated molecule. [Pg.907]

In Reference [31], the suppression and enhancement of IVR in a collinear model of OCS [61,62] is investigated. The intent is to assess the extent of control in such a system and to establish the relationship between control and overlapping resonances. From all the vibrational states obtained, it is observed that control is best when considering a superposition of states, that is near the dissociation onset. The energy differences between these states are relatively small ( 0.0004 a.u.), whose inverse corresponds to a timescale of 60 fs, thus giving rise to a high density of states with timescales comparable to vibrational relaxation. The result is... [Pg.358]

Consider a complex scalar product space V that models the states of a quantum system. Suppose G is the symmetry group and (G, V, p) is the natural representation. By the argument in Section 5.1, the only physically natural subspaces are invariant subspaces. Suppose there are invariant subspaces Gi, U2, W c V such that W = U U2. Now consider a state w of the quantum system such that w e W, but w Uy and w U2. Then there is a nonzero mi e Gi and a nonzero M2 e U2 such that w = ui + U2. This means that the state w is a superposition of states ui and U2. It follows that w is not an elementary state of the system — by the principle of superposition, anything we want to know about w we can deduce by studying mi and M2. [Pg.186]

B. Kohler My question to T. Softley ties in to one of the major themes of the meeting, namely coherence. In your presentation you briefly mentioned that it may be important to consider an initially coherent superposition of states in the preparation step of experiments on highly excited Rydberg states. Several groups have now prepared coherent electronic wavepackets using picosecond (and shorter) pulses. Would this kind of an initial state be useful for any of the classes of pulsed-field ionization experiments that you have described ... [Pg.723]

These devices allow utilizing new computational algorithms based on quantum superposition of states, allowing simultaneous representing many different numbers (so-called quantum computation). In a quantum computer information is loaded as a string of qubits (quantum mechanical representation of bits), which are quantum objects that can occupy different quantum states. A material implementation of qubits requires finding a medium, which can keep superpositional states from the destruction by interaction with the... [Pg.327]

The advances in this field are related with the development of the theory of configuration interaction between different excitation channels in nuclear physics including quantum superposition of states corresponding to different spatial locations for interpretation of resonances in nuclear scattering cross-section [7] related with the Fano configuration interaction theory for autoionization processes in atomic physics [8],... [Pg.23]

The interband interaction is controlled by the details of the quantum superposition of states corresponding to different spatial locations i.e, between the wave functions of the pairing electrons in the different subbands of the superlattice... [Pg.32]

Even though we have a continuous superposition of states in Section 2, we observed in the interaction region the behavior of a stationary state, which... [Pg.16]

In spite of the apparent obviousness of the beat effect in optical radiation at pulsed excitation, it was only registered and studied comparatively recently. At the beginning of the 1960s Aleksandrov [3] and, independently, Dodd and coworkers [119] discovered beats in atomic emission. It may be pointed out that this, and the related phenomenon of beat resonance, was predicted by Podgoretskii [313], as well as by Dodd and Series [118]. The phenomenon was treated on the basis of well-known fundamental concepts on coherent superposition of states, and was named accordingly quantum beats. These ideas are amply expounded in reviews and monographs [4, 5, 6, 71, 96, 120, 146, 182, 188, 343, 348, 388]. [Pg.135]

Recent experimental studies on interference effects in solution, and on collisional vibrational energy transfer between molecules in solution, provide some insight into the molecular time scales of these relaxation events. For example [171], the time scale for transfer of population to die vibrational modes in liquid CH3OH is on thd order of 5 to 15ps [172], Further, studies of the preparation of coherent superpositions of states in solution show that phase coherences of molecules exist in solution for time scales greater than 100 fs [173, 174], -- i... [Pg.98]

Resonantly enhanced two-photon dissociation of Na2 from a bound state of the. ground electronic state occurs [202] by initial excitation to an excited intermediate bound state Em,Jm, Mm). The latter is a superposition of states of the A1 1+ and b3Il electronic curves, a consequence of spin-orbit coupling. The continuum states reached in the two-photon excitation can have either a singlet or a triplet character, but, despite the multitude of electronic states involved in the computation reported J below, the predominant contributions to the products Na(3s) + Na(3p) and Na(3s) + Na(4s) are found to come from the 1 flg and 3 + electronic states, respectively. The resonant character of the two-photon excitation allows tire selection of a Single initial state from a thermal ensemble here results for vt = Ji — 0, where vt,./, denote the vibrational and rotational quantum numbers of the initial state, are stJjseussed. [Pg.121]

Optimized Bimolecular Scattering Total Suppression of ReadthA Event In Section 7.3.1 we considered optimizing reactive scattering by varyj the coefficients a,- of a superposition of states. In this section we show that whefi j number of initial open states in the reactant space exceeds the number of open st8jj ... [Pg.162]

We have elucidated the nature of pulsed-shaping control of photodissociation from the viewpoint of energy-resolved coherent control theory. Clearly, when excitation is from a superposition of states, as in the vast majority of control scenarios, the role of the pulse shaping is to enhance a different set of interfering pathways for each control objective. [Pg.321]

The effect of a radio frequency pulse is to mix the a and p states so that a superposition of states is obtained ... [Pg.469]

In a two-electrode interferometer the yield of 2P-atoms is independent of the field sign, provided that only the atoms in the pure 25-state get into that field. If, however, the initial wave function is a superposition of states with different parity (25 and 2P), then the yields for the opposite signs of the field will be different. [Pg.358]

On the other hand, if the initial wave function is a superposition of states of opposite parity (2s and 2p), the emergence probabilities for opposite field directions differ by an amount proportional to the product of the amplitudes of the atomic states 2s and 2p in the initial wave function. [Pg.832]

Once this discussion of the space-inversion operator in the context of optically active isomers is accepted, it follows that a molecular interpretation of the optical activity equation will not be a trivial matter. This is because a molecule is conventionally defined as a dynamical system composed of a particular, finite number of electrons and nuclei it can therefore be associated with a Hamiltonian operator containing a finite number (3 M) of degrees of freedom (variables) (Sect. 2), and for such operators one has a theorem that says the Hamiltonian acts on a single, coherent Hilbert space > = 3 (9t3X)51). In more physical terms this means that all the possible excitations of the molecule can be described in . In principle therefore any superposition of states in the molecular Hilbert space is physically realizable in particular it would be legitimate to write the eigenfunctions of the usual molecular Hamiltonian, Eq. (2.14)1 3 in the form of Eq. (4.14) with suitable coefficients (C , = 0. Moreover any unitary transformation of the eigen-... [Pg.21]

A probing device designed to detect locally an asymptotic quantum state must correlate to a linear superposition of states with different spin states with Ms = 0. This would stand as a physical process at the Fence. [Pg.81]

A photon is left behind without specifying in which cavity it is this ensures presence but not localizability. The quantum state is then a linear superposition of states with one photon free ... [Pg.95]

A second debate about the completeness of quantum theory did not benefit theoretical chemistry any better. Superposition of state functions which is allowed in quantum, but not in classical systems, dictates that the former is an entangled, non-local holistic theory [3]. The famous Einstein-Bohr debates, although centred around this issue, became so bogged down in side issues that they never squarely faced the real dilemma that a non-local (quan-... [Pg.283]

The target part of the entrance-channel state Ovoko) is a coherent superposition of magnetic substates defined by an arbitrary choice of coordinate frame. It is transferred into another fully-coherent superposition of states in the exit channel ivjkj). The scattering amplitude is defined as a generalisation of (4.46), so that its absolute square is the corresponding... [Pg.201]


See other pages where Superposition of states is mentioned: [Pg.1071]    [Pg.409]    [Pg.187]    [Pg.33]    [Pg.905]    [Pg.508]    [Pg.160]    [Pg.70]    [Pg.297]    [Pg.302]    [Pg.41]    [Pg.2]    [Pg.286]    [Pg.32]    [Pg.99]    [Pg.116]    [Pg.105]    [Pg.124]    [Pg.147]    [Pg.290]    [Pg.161]    [Pg.95]   
See also in sourсe #XX -- [ Pg.184 ]

See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Superposition states

Superpositional state

Superpositioning

Superpositions

© 2024 chempedia.info