Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical reaction rate

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

The team of Crooks is involved in the synthesis and the use of dendrimers and, more particularly, poly(amidoamine) dendrimers (PAMAM), for the preparation of dendrimer-encapsulated mono- or bimetallic nanoparticles of various metals (Pt, Pd, Cu, Au, Ag, Ni, etc.) [55, 56]. The dendrimers were used as nanocatalysts for the hydrogenation of allyl alcohol and N-isopropylacrylamide or other alkenes under different reaction conditions (water, organic solvents, biphasic fluorous/or-ganic solvents or supercritical COz). The hydrogenation reaction rate is dependent on dendrimer generation, as higher-generation dendrimers are more sterically... [Pg.225]

The effects of added C02 on mass transfer properties and solubility were assessed in some detail for the catalytic asymmetric hydrogenation of 2-(6 -meth-oxy-2 -naphthyl) acrylic acid to (Sj-naproxen using Ru-(S)-BINAP-type catalysts in methanolic solution. The catalytic studies showed that a higher reaction rate was observed under a total C02/H2 pressure of ca. 100 bar (pH2 = 50bar) than under a pressure of 50 bar H2 alone. Upon further increase of the C02 pressure, the catalyst could be precipitated and solvent and product were removed, at least partly by supercritical extraction. Unfortunately, attempts to re-use the catalyst were hampered by its deactivation during the recycling process [11]. [Pg.1370]

Supercritical fluid (SCF) with the beneficial effects of both liquid- and gas-phase chemistry is an emerging reaction medium for many scientific and technical reasons. The reaction rate and selcectivity are readily tunable by a subtle change in pressure and temperature. [Pg.401]

A supercritical fluid (SCF) is a substance above its critical temperature and critical pressure. The critical temperature is the highest temperature at which a substance can exist as a gas. The critical pressure is the pressure needed at the critical temperature to liquify a gas. Above the critical temperature and critical pressure, a substance has a density characteristic of a liquid but the flow properties of a gas, and this combination offers advantages as a reaction solvent. The liquidlike density allows the supercritical fluid to dissolve substances, while the gaslike flow properties offer the potential for fast reaction rates. Supercritical carbon dioxide (scC02) has a critical temperature of 31°C and critical pressure of 73 atm. [Pg.183]

Supercritical fluids are benign alternatives to conventional organic solvents that may offer improvements in reaction rate, product selectivity, and product separation. We reported the first use of SCFs for phase-transfer catalysis (PTC), where these benign alternatives also offer greatly improved transport, product separation, catalyst recycle, and facile solvent removal (26-29). [Pg.401]

Supercritical media, in general, have the potential to increase reaction rates, to enhance the selectivity of chemical reactions and to facilitate relatively easy separations of reactants, products, and catalysts after reaction (3). However reactions involving CO2 and water are typically conducted as biphasic processes, with the organic substrate dissolved mostly in the C02-rich phase and the water-soluble catalysts and/or oxidant dissolved in the aqueous phase. Such systems suffer from inter-phase mass-transfer limitations (4). [Pg.448]

Remarkable tuning of reaction rates has been achieved for the isomerization of several dye molecules in supercritical fluid solvents using both small pressure changes and small additions of cosolvents. Rates of the thermal cis-trans relaxation were measured spectroscopically following irradiation for three dyes in supercritical carbon dioxide and ethane, pure and with several polar and protic cosolvents. These results demonstrate the versatility of supercritical fluid solvents, both to examine reaction mechanisms and as a means to tune rates (DiUow et al., 1998). [Pg.74]

Remarkable tuning of reaction rates has been achieved for the isomerization of several dye molecules in supercritical fluid solvents (DUlow et al., 1998). [Pg.145]

Esterification between oleic acid and oleyl alcohol, catalyzed by the Mucor miehei immobihzed hpase in a batch-stirred tank reactor with supercritical carbon dioxide as solvent produced higher reaction rates at supercritical conditions than in the solvent-free system (Knez et al., 1995). [Pg.151]

The three-phase catalytic hydrogenation of an unsaturated ketone using supercritical carbon dioxide as a solvent was studied in order to simulate the performance of a semi-industrial trickle-bed reactor. It is shown that supercritical CO2 strongly increases the reaction rate (Devetta et al., 1999). [Pg.154]

Conversion of polymers and biomass to chemical intermediates and monomers by using subcritical and supercritical water as the reaction solvent is probable. Reactions of cellulose in supercritical water are rapid (< 50 ms) and proceed to 100% conversion with no char formation. This shows a remarkable increase in hydrolysis products and lower pyrolysis products when compared with reactions in subcritical water. There is a jump in the reaction rate of cellulose at the critical temperature of water. If the methods used for cellulose are applied to synthetic polymers, such as PET, nylon or others, high liquid yields can be achieved although the reactions require about 10 min for complete conversion. The reason is the heterogeneous nature of the reaction system (Arai, 1998). [Pg.166]

Supercritical solvents can be used to adjust reaction rate constants (k) by as much as two orders of magnitude by small changes in the system pressure. Activation volumes (slopes of In k vs P) as low as —6000 cm3/mol were observed for a homogeneous reaction (97). Pressure effects can also be pronounced on reversible reactions (17). In one example the equilibrium constant was increased from two- to sixfold by increasing the solvent pressure. The choice of supercritical solvent can also dramatically affect an equilibrium constant. An obvious advantage of using supercritical fluid solvents as a media for chemical reactions is the adjustability of the reaction kinetics and equilibria owing to solvent effects. [Pg.227]

Fig. 35. Effect of phase behavior on palladium-catalyzed oxidation of benzyl alcohol to benzaldehyde in supercritical CO2 characterized by transmission- and ATR-IR spectroscopy combined with video monitoring of the reaction mixture (102). The figure at the top shows the pressure dependence of the reaction rate. Note the strong increase of the oxidation rate between 140 and 150 bar. The in situ ATR spectra (middle) taken at 145 and 150 bar, respectively, indicate that a change from a biphasic (region A) to a monophasic (B) reaction mixture occurred in the catalyst surface region in this pressure range. This change in the phase behavior was corroborated by the simultaneous video monitoring, as shown at the bottom of the figure. Fig. 35. Effect of phase behavior on palladium-catalyzed oxidation of benzyl alcohol to benzaldehyde in supercritical CO2 characterized by transmission- and ATR-IR spectroscopy combined with video monitoring of the reaction mixture (102). The figure at the top shows the pressure dependence of the reaction rate. Note the strong increase of the oxidation rate between 140 and 150 bar. The in situ ATR spectra (middle) taken at 145 and 150 bar, respectively, indicate that a change from a biphasic (region A) to a monophasic (B) reaction mixture occurred in the catalyst surface region in this pressure range. This change in the phase behavior was corroborated by the simultaneous video monitoring, as shown at the bottom of the figure.
Selective oxidation of ethylene to acetaldehyde was carried out over carbon-supported Pd and Pt membrane catalysts.1322 The concept of supported liquid-phase catalysis was also successfully applied in the Wacker oxidation.1323 The Wacker reaction can be performed in alcohol-supercritical C02.1324 C02 as cosolvent accelerates reaction rates and remarkably affects the selectivity towards methyl ketone in the presence of an alcohol. [Pg.527]

Promising results were observed in Friedel-Crafts alkylation77 and epoxidation.78 Higher rates or better selectivities were found for hydroformylations in supercritical C02.79-84 Simple trialkyl phosphines, for examples, were shown to provide highly active Rh catalysts.81 Hydroboration showed enhanced regioselec-tivity.85 The Wacker reaction performed in alcohol-supercritical C02 exhibits high reaction rates and markedly increased selectivity toward methyl ketone.86... [Pg.810]

In high pressure work, slurry reactors are used when a solid catalyst is suspended in a liquid or supercritical fluid (either reactant or inert) and the second reactant is a high pressure gas or also a supercritical fluid. The slurry catalytic reactor will be used in the laboratory to try different catalyst batches or alternatives. Or to measure the reaction rate under high rotational speeds for assessing intrinsic kinetics. Or even it can be used at different catalyst loadings to assess mass transfer resistances. It can also be used in the laboratory to check the deactivating behaviour. [Pg.303]

The application of SCF as reaction media for enzymatic synthesis has several advantages, such as the higher initial reaction rates, higher conversion, possible separation of products from unreacted substrates, over solvent-free, or solvent systems (where either water or organic solvents are used). Owing to the lower mass-transfer limitations and mild (temperature) reaction conditions, at first the reactions which were performed in non-aqueous systems will be transposed to supercritical media. An additional benefit of using SCFs as... [Pg.493]

The most striking feature of supercritical single-phase hydrogenation processes is the tremendous reaction rate. The whole reaction is completed in a few seconds. Below, we will describe the supercritical single-phase hydrogenation process in detail, compare it with the traditional processes, and look at the impact of using the new technology. [Pg.502]


See other pages where Supercritical reaction rate is mentioned: [Pg.227]    [Pg.261]    [Pg.37]    [Pg.137]    [Pg.144]    [Pg.467]    [Pg.159]    [Pg.165]    [Pg.593]    [Pg.1370]    [Pg.14]    [Pg.193]    [Pg.136]    [Pg.111]    [Pg.193]    [Pg.342]    [Pg.261]    [Pg.145]    [Pg.157]    [Pg.275]    [Pg.326]    [Pg.329]    [Pg.359]    [Pg.488]    [Pg.501]    [Pg.504]    [Pg.506]    [Pg.508]    [Pg.446]    [Pg.446]    [Pg.22]   
See also in sourсe #XX -- [ Pg.653 ]




SEARCH



Reaction rate implication in supercritical solvents

© 2024 chempedia.info