Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical materials

If a twin-screw extruder is stopped and opened, several zones can be distinguished clearly (Fig. 12.1). The channel near the feed hopper is more or less filled with solids. This material melts, and a zone with an only partly filled channel can be seen. At the end of the screw, where pressure has to be built up, the channel is completely filled with polymer. This can conveniently be used for supercritical processing. Screw elements that consume pressure are always preceded by a fully filled zone, which seals off the channel and prevents the supercritical material from leaking back. [Pg.257]

Outlet Superheater (SH) header of Unit 3 (600 MW. supercritical multi-fuel l of an ENEL power station it consists of 2 twin and independent bodies (22 m length, 488.5 mjn internal diameter, 76.2 mm thickness material SA 430 TP 321H stairdess steel). This header has suffered from relevant cracking problems in assembly welds after 108.000 hours of service and... [Pg.70]

Outlet Superheater (SHI header of Unit 4 (600 MW. supercritical multi-fliel l of an ENEL power station it also consists of 2 twin and independent bodies (23 m length, 215 mm internal diameter, 103 mm thickness material ASTM A335 P22 - 2.25CrlMo - low alloy). Structural integrity problems and monitoring requirements and objectives same as above. [Pg.71]

BE-7S13 Superheater materials testing for ultra supercritical boilers Dr, A Vanderschaege GEC Alsthom -Stein Ind. [Pg.936]

Producing aerogel-like materials without supercritical drying at all preparation of inorganic—organic hybrid materials. ... [Pg.3]

It is less well known, but certainly no less important, that even with carbon dioxide as a drying agent, the supercritical drying conditions can also affect the properties of a product. Eor example, in the preparation of titania aerogels, temperature, pressure, the use of either Hquid or supercritical CO2, and the drying duration have all been shown to affect the surface area, pore volume, and pore size distributions of both the as-dried and calcined materials (34,35). The specific effect of using either Hquid or supercritical CO2 is shown in Eigure 3 as an iHustration (36). [Pg.3]

The nuclear chain reaction can be modeled mathematically by considering the probable fates of a typical fast neutron released in the system. This neutron may make one or more coUisions, which result in scattering or absorption, either in fuel or nonfuel materials. If the neutron is absorbed in fuel and fission occurs, new neutrons are produced. A neutron may also escape from the core in free flight, a process called leakage. The state of the reactor can be defined by the multiplication factor, k, the net number of neutrons produced in one cycle. If k is exactly 1, the reactor is said to be critical if / < 1, it is subcritical if / > 1, it is supercritical. The neutron population and the reactor power depend on the difference between k and 1, ie, bk = k — K closely related quantity is the reactivity, p = bk jk. i the reactivity is negative, the number of neutrons declines with time if p = 0, the number remains constant if p is positive, there is a growth in population. [Pg.211]

Natural Products. Various methods have been and continue to be employed to obtain useful materials from various parts of plants. Essences from plants are obtained by distillation (often with steam), direct expression (pressing), collection of exudates, enfleurage (extraction with fats or oils), and solvent extraction. Solvents used include typical chemical solvents such as alcohols and hydrocarbons. Liquid (supercritical) carbon dioxide has come into commercial use in the 1990s as an extractant to produce perfume materials. The principal forms of natural perfume ingredients are defined as follows the methods used to prepare them are described in somewhat general terms because they vary for each product and suppHer. This is a part of the industry that is governed as much by art as by science. [Pg.76]

Eig. 1. Schematic pressure—temperature diagram for a pure material showing the supercritical fluid region, where is the pure component critical point... [Pg.219]

A paiticularly attiactive and useful feature of supeicritical fluids is that these materials can have properties somewhere between those of a gas and a hquid (Table 2). A supercritical fluid has more hquid-hke densities, and subsequent solvation strengths, while possessiag transport properties, ie, viscosities and diffusivities, that are more like gases. Thus, an SCF may diffuse iato a matrix more quickly than a Hquid solvent, yet still possess a Hquid-like solvent strength for extracting a component from the matrix. [Pg.221]

FoodApphca.tlons, Carbon dioxide, a nontoxic material, can be used to extract thermally labde food components at near-ambient temperatures. The food product is thus not contaminated with residual solvent, as is potentially the case when usiag coaveatioaal Hquid solveats such as methylene chloride or hexane. In the food iadustry, CO2 is not recorded as a foreign substance or additive. Supercritical solvents not only can remove oils, caffeiae, or cholesterol from food substrates, but can also be used to fractionate mixtures such as glycerides and vegetable oils iato aumerous compoaeats. [Pg.226]

Materials. Supercritical fluids offer many opportunities in materials processing, such as crystallization, recrystallization, comminution, fiber formation, blend formation, and microceUular (foam) formation. [Pg.228]

Supercritical and Freeze Drying. To eliminate surface tension related drying stresses in fine pore materials such as gels, ware can be heated in an autoclave until the Hquid becomes a supercritical fluid, after which drying can be accompHshed by isothermal depressurization to remove the fluid (45,69,72) (see Supercritical fluid). In materials that are heat sensitive, the ware can be frozen and the frozen Hquid can be removed by sublimation (45,69). [Pg.310]

CeUulosic materials, such as farm wastes, can be upgraded for animal feed by simply bringing them into contact with ammonia (qv). The ceUulose sweUs and is made more digestible, and at the same time some ammonia nitrogen, which is a nutrient for mminants, is left behind. Supercritical ammonia improves susceptibiHty to enzymatic hydrolysis (17). [Pg.449]

Supercritical Atomization. Atomization can be obtained by mixing a supercritical fluid (SCF) with the material to be atomized. This process reduces volatile organic compound (VOC) emissions as the SCF acts as a solvent and replaces some of the hydrocarbon solvents in the material (see... [Pg.330]

Supercriticalfluid solvents are those formed by operating a system above the critical conditions of the solvent. SolubiHties of many solutes ia such fluids often is much greater than those found for the same solutes but with the fluid at sub atmospheric conditions. Recently, there has been considerable iaterest ia usiag supercritical fluids as solvents ia the production of certain crystalline materials because of the special properties of the product crystals. Rapid expansion of a supercritical system rapidly reduces the solubiHty of a solute throughout the entire mixture. The resulting high supersaturation produces fine crystals of relatively uniform size. Moreover, the solvent poses no purification problems because it simply becomes a gas as the system conditions are reduced below critical. [Pg.356]


See other pages where Supercritical materials is mentioned: [Pg.111]    [Pg.294]    [Pg.134]    [Pg.134]    [Pg.111]    [Pg.294]    [Pg.134]    [Pg.134]    [Pg.2767]    [Pg.1287]    [Pg.610]    [Pg.1]    [Pg.3]    [Pg.3]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.6]    [Pg.7]    [Pg.121]    [Pg.230]    [Pg.74]    [Pg.88]    [Pg.546]    [Pg.367]    [Pg.195]    [Pg.153]    [Pg.248]    [Pg.370]    [Pg.224]    [Pg.226]    [Pg.227]    [Pg.227]    [Pg.228]    [Pg.229]    [Pg.229]    [Pg.229]    [Pg.105]    [Pg.389]   
See also in sourсe #XX -- [ Pg.517 ]




SEARCH



Evaluation of Supercritical Fluid Interactions with Polymeric Materials

Extraction and Destruction of Hazardous Materials by Supercritical Fluids

Materials processing with supercritical solvents

Materials synthesis supercritical carbon dioxide

Supercritical adsorption in nanoporous materials

Supercritical carbon dioxide polymeric materials

Supercritical carbon dioxide technology materials

Supercritical fluids materials

Supercritical fluids, green chemistry materials

Supercritical viscous materials

Supercritical water materials synthesis

Synthesis of Advanced Materials Using Supercritical Fluids

© 2024 chempedia.info