Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superacids, also

The most stable of all alkyl cations is the tert-butyl cation. Even the relatively stable tert-pentyl and fen-hexyl cations fragment at higher temperatures to produce the tert-butyl cation, as do all other alkyl cations with four or more carbons so far studied. Methane,ethane, and propane, treated with superacid, also yield ten-butyl cations as the main product (see 2-17). Even paraffin wax and polyethylene give the ten-butyl cation. Solid salts of frrf-butyl and rerf-pentyl cations (e.g., MeaC" SbFg ) have been prepared from superacid solutions and are stable below -20°C. ... [Pg.221]

Thus, none of these three ions is a simple carbenium ion with the charge localized on an electron-deficient carbon atom. Most stable carbocations have extra stabilization of this sort. But even these relatively stable cations cannot be detected in normal solutions by NMR. This is because they are so reactive that they combine with even weak nucleophiles like water or chloride ions. Yet due to Olah s discovery of superacid (also called magic acid ) in the 1960s we know that carbocations can exist in solution (you can read about this in the box). But are they formed as intermediates in substitution reactions ... [Pg.408]

With due regard for the difference of opinion between the Japanese and American chemists, on the one hand, and the Soviet, on the other, the latter continued their efforts to prove the correctness of the two-stage scheme of the process. With this aim in view study was made of nucleophilic substitution reactions in a wide range of media — from strongly nucleophilic to superacidic. Also, the authors include the comparative research of structure and properties of carbocations generated from the same precursors in different media. [Pg.160]

I would like to credit especially the fundamental contributions of Ron Gillespie to strong acid (superacid) chemistry and also to recall his generous help while I was still working at the Dow Laboratories in Canada. 1 reestablished contact with him during this time. We first met in the winter of 1956 at University College in London, where he worked with Christopher Ingold. Subsequently, he moved to McMaster... [Pg.96]

Acids are not limited to liquid (or gaseous) systems. Solid acids also play a significant role. Acidic oxides such as silica, silica-alumina, etc. are used extensively as solid acid catalysts. New solid acid systems that are stronger than those used conventionally are frequently called solid superacids. [Pg.99]

The high acidity of superacids makes them extremely effective pro-tonating agents and catalysts. They also can activate a wide variety of extremely weakly basic compounds (nucleophiles) that previously could not be considered reactive in any practical way. Superacids such as fluoroantimonic or magic acid are capable of protonating not only TT-donor systems (aromatics, olefins, and acetylenes) but also what are called (T-donors, such as saturated hydrocarbons, including methane (CH4), the simplest parent saturated hydrocarbon. [Pg.100]

The key initiation step in cationic polymerization of alkenes is the formation of a carbocationic intermediate, which can then interact with excess monomer to start propagation. We studied in some detail the initiation of cationic polymerization under superacidic, stable ion conditions. Carbocations also play a key role, as I found not only in the acid-catalyzed polymerization of alkenes but also in the polycondensation of arenes as well as in the ring opening polymerization of cyclic ethers, sulfides, and nitrogen compounds. Superacidic oxidative condensation of alkanes can even be achieved, including that of methane, as can the co-condensation of alkanes and alkenes. [Pg.102]

Many superacid-catalyzed reactions were found to be carried out advantageously not only using liquid superacids but also over solid superacids, including Nafion-H or certain zeolites. We extensively studied the catalytic activity of Nafion-H and related solid acid catalysts (including supported perfluorooctanesulfonic acid and its higher ho-... [Pg.102]

Different types of other coal liquefaction processes have been also developed to convert coals to liqnid hydrocarbon fnels. These include high-temperature solvent extraction processes in which no catalyst is added. The solvent is usually a hydroaromatic hydrogen donor, whereas molecnlar hydrogen is added as a secondary source of hydrogen. Similar but catalytic liquefaction processes use zinc chloride and other catalysts, usually under forceful conditions (375-425°C, 100-200 atm). In our own research, superacidic HF-BFo-induced hydroliquefaction of coals, which involves depolymerization-ionic hydrogenation, was found to be highly effective at relatively modest temperatnres (150-170°C). [Pg.132]

The superacid-catalyzed cracking of hydrocarbons (a significant practical application) involves not only formation of trivalent carbo-cationic sites leading to subsequent /3-cleavage but also direct C-C bond protolysis. [Pg.163]

Not only protolytic reactions but also a whole range of varied elee-trophilic reactions can be carried out on alkanes under superacidic conditions. [Pg.164]

Similar to oxonium ions, our studies of sulfonium ions also showed protosolvolytic activation in superacids to give sulfur superelectrophiles. The parent sulfonium ion (HjS ), for example, gives H4S (diprotonated hydrogen sulfide) in superacids. [Pg.197]

Various other heteroatom-substituted earbocations were also found to be activated by superacids. a-Nitro and a-cyanocarbenium ions, R2C N02 or R2C CN, for example, undergo O- or N-protonation, respectively, to dicationic species, decreasing neighboring nitrogen participation, which greatly enhances the electrophilicity of their carbo-... [Pg.198]

It should be recognized that superelectrophilic reactions can also proceed with only electrophilic assistance (solvation, association) by the superacids without forming distinct depositive intermediates. Pro-tosolvolytic activation of electrophiles should always be considered in this context. [Pg.204]

We shonld also utilize liquid hydrocarbons, which frequently accompany natural gas. These so-called natural gas liquids currently have little use besides their caloric heat value. They consist mainly of saturated straight hydrocarbons chains containing 3-6 carbon atoms, as well as some aromatics. As we found (Chapter 8), it is possible by superacidic catalytic treatment to upgrade these liquids to high-octane, commercially usable gasoline. Their use will not per se solve our long-... [Pg.210]

This book is mainly about my life in search of new chemistry. Because some of my work centered around the discovery of extremely strong superacids, which are sometimes also called magic acids, I chose the title A Life of... [Pg.286]

Acid—Base Chemistry. Acetic acid dissociates in water, pK = 4.76 at 25°C. It is a mild acid which can be used for analysis of bases too weak to detect in water (26). It readily neutralizes the ordinary hydroxides of the alkaU metals and the alkaline earths to form the corresponding acetates. When the cmde material pyroligneous acid is neutralized with limestone or magnesia the commercial acetate of lime or acetate of magnesia is obtained (7). Acetic acid accepts protons only from the strongest acids such as nitric acid and sulfuric acid. Other acids exhibit very powerful, superacid properties in acetic acid solutions and are thus useful catalysts for esterifications of olefins and alcohols (27). Nitrations conducted in acetic acid solvent are effected because of the formation of the nitronium ion, NO Hexamethylenetetramine [100-97-0] may be nitrated in acetic acid solvent to yield the explosive cycl o trim ethyl en etrin itram in e [121 -82-4] also known as cyclonit or RDX. [Pg.66]

TaF has been characterized by ir, Raman, x-ray diffraction, and mass spectrometry (3,11,12). TaF has been used as a superacid catalyst for the conversion of CH to gasoline-range hydrocarbons (qv) (12) in the manufacture of fluoride glass and fluoride glass optical fiber preforms (13), and incorporated in semiconductor devices (14). TaF is also a catalyst for the Hquid-phase addition of HF to polychlorinated ethenes (15). The chemistry of TaF has been reviewed (1,16—19). Total commercial production for TaF is thought to be no more than a few hundred kilograms aimuaHy. [Pg.252]

Friedel-Crafts acylation using nittiles (other than HCN) and HCI is an extension of the Gattermann reaction, and is called the Houben-Hoesch reaction (120—122). These reactions give ketones and are usually appHcable to only activated aromatics, such as phenols and phenoHc ethers. The protonated nittile, ie, the nitrilium ion, acts as the electrophilic species in these reactions. Nonactivated ben2ene can also be acylated with the nittiles under superacidic conditions 95% trifluoromethanesulfonic acid containing 5% SbF (Hg > —18) (119). A dicationic diprotonated nittile intermediate was suggested for these reactions, based on the fact that the reactions do not proceed under less acidic conditions. The significance of dicationic superelectrophiles in Friedel-Crafts reactions has been discussed (123,124). [Pg.559]

Sulfonated styrene—divinylbensene cross-linked polymers have been appHed in many of the previously mentioned reactions and also in the acylation of thiophene with acetic anhydride and acetyl chloride (209). Resins of this type (Dowex 50, Amherljte IR-112, and Permutit Q) are particularly effective catalysts in the alkylation of phenols with olefins (such as propylene, isobutylene, diisobutylene), alkyl haUdes, and alcohols (210) (see Ion exchange). Superacids. [Pg.564]

Solid Superacids. Most large-scale petrochemical and chemical industrial processes ate preferably done, whenever possible, over soHd catalysts. SoHd acid systems have been developed with considerably higher acidity than those of acidic oxides. Graphite-intercalated AlCl is an effective sohd Friedel-Crafts catalyst but loses catalytic activity because of partial hydrolysis and leaching of the Lewis acid halide from the graphite. Aluminum chloride can also be complexed to sulfonate polystyrene resins but again the stabiUty of the catalyst is limited. [Pg.565]

Interpretation of tiie ratio of capture of competing nucleophiles has led to the estimate that bromonium ions have lifetimes on the order of 10 s in methanol. This lifetime is about 100 times longer than fliat for secondary caibocations. There is also direct evidence for the existence of bromonium ions. The bromonium ion related to propene can be observed by NMR spectroscopy when l-bromo-2-fluoropropane is subjected to superacid conditions. The terminal bromine adopts a bridging position in the resulting cation. [Pg.363]


See other pages where Superacids, also is mentioned: [Pg.13]    [Pg.646]    [Pg.245]    [Pg.477]    [Pg.109]    [Pg.646]    [Pg.13]    [Pg.646]    [Pg.245]    [Pg.477]    [Pg.109]    [Pg.646]    [Pg.68]    [Pg.96]    [Pg.99]    [Pg.100]    [Pg.103]    [Pg.134]    [Pg.147]    [Pg.165]    [Pg.167]    [Pg.190]    [Pg.201]    [Pg.239]    [Pg.151]    [Pg.556]    [Pg.561]    [Pg.564]    [Pg.565]    [Pg.510]    [Pg.102]    [Pg.286]   


SEARCH



Superacid

Superacidity

Superacids

© 2024 chempedia.info