Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfoxides reaction with bases

Both the metallation of sulfoxides and the reaction of a-lithio sulfoxides in THF are known to be highly stereoselective. " It has been found that, on reaction with base, the diastereotopic methylene protons of benzyl methyl sulfoxide exchange at different rates, the relative ratio being... [Pg.147]

Cyclopropyldiphenylsulfonium tetrafluoroborates 89 are versatile three-carbon building blocks. " Upon reaction with base, e.g. sodium methylsulfinylmethylide in 1,2-dimethoxyethane or potassium hydroxide in dimethyl sulfoxide, these salts are converted into ylides 90 which readily react with ketones or acrylates to afford spiroepoxides 91 or spiro[2.2]pentane-l-carboxylates 92, respectively. -Similar reactions were observed with (dimethylamino)phenylsulfoxonium cyclopropylide. ... [Pg.1671]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

Nucleophilic Substitution Route. Commercial synthesis of poly(arylethersulfone)s is accompHshed almost exclusively via the nucleophilic substitution polycondensation route. This synthesis route, discovered at Union Carbide in the early 1960s (3,4), involves reaction of the bisphenol of choice with 4,4 -dichlorodiphenylsulfone in a dipolar aprotic solvent in the presence of an alkaUbase. Examples of dipolar aprotic solvents include A/-methyl-2-pyrrohdinone (NMP), dimethyl acetamide (DMAc), sulfolane, and dimethyl sulfoxide (DMSO). Examples of suitable bases are sodium hydroxide, potassium hydroxide, and potassium carbonate. In the case of polysulfone (PSE) synthesis, the reaction is a two-step process in which the dialkah metal salt of bisphenol A (1) is first formed in situ from bisphenol A [80-05-7] by reaction with the base (eg, two molar equivalents of NaOH),... [Pg.460]

Vinyl chloride reacts with sulfides, thiols, alcohols, and oximes in basic media. Reaction with hydrated sodium sulfide [1313-82-2] in a mixture of dimethyl sulfoxide [67-68-5] (DMSO) and potassium hydroxide [1310-58-3], KOH, yields divinyl sulfide [627-51-0] and sulfur-containing heterocycles (27). Various vinyl sulfides can be obtained by reacting vinyl chloride with thiols in the presence of base (28). Vinyl ethers are produced in similar fashion, from the reaction of vinyl chloride with alcohols in the presence of a strong base (29,30). A variety of pyrroles and indoles have also been prepared by reacting vinyl chloride with different ketoximes or oximes in a mixture of DMSO and KOH (31). [Pg.414]

Zirconium tetrachloride is instantly hydrolyzed in water to zirconium oxide dichloride octahydrate [13520-92-8]. Zirconium tetrachloride exchanges chlorine for 0x0 bonds in the reaction with hydroxylic ligands, forming alkoxides from alcohols (see Alkoxides, METAl). Zirconium tetrachloride combines with many Lewis bases such as dimethyl sulfoxide, phosphoms oxychloride and amines including ammonia, ethers, and ketones. The zirconium organometalLic compounds ate all derived from zirconium tetrachloride. [Pg.435]

Corey and Chaykovsky had discovered that dimethyl sulfoxide is converted to methyl-sulfinyl carbanion upon treatment with sodium hydride114 and that this conjugate base of DMSO reacts with various electrophiles115. This finding has opened up various reactions with a-sulfmyl carbanions derived from sulfoxides, since the sulfinyl function can be removed either by thermolysis or by subjecting the compound to reductive desulfurization. Thus a-sulfmyl carbanions have become versatile synthetically useful reagents. [Pg.606]

Recently, optically active (+)-(R)-methy 1 tolyl sulfoxide 102, R = H was alkylated with a very high diastereoselectivity136. The sulfoxide was treated with either lithium diisopropy-lamide (LDA) or lithium tetramethylpiperidide (LTMP) to form the lithio-derivative, which upon subsequent reaction with lithium a-bromomethyl acrylate gave a mixture of two diastereomers of a-methylene-y-sulfinylcarboxylic acid 103. The use of the sterically highly hindered base, LTMP, gave the product with a higher diastereoselectivity. For example, the Sc4 Rc4 ratio was 95 5 when R was the methyl group. [Pg.609]

Addition of such a-lithiosulfinyl carbanions to aldehydes could proceed with asymmetric induction at the newly formed carbinol functionality. One study of this process, including variation of solvent, reaction temperature, base used for deprotonation, structure of aldehyde, and various metal salts additives (e.g., MgBrj, AlMej, ZnClj, Cul), has shown only about 20-25% asymmetric induction (equation 22) . Another study, however, has been much more successful Solladie and Moine obtain the highly diastereocontrolled aldol-type condensation as shown in equation 23, in which dias-tereomer 24 is the only observed product, isolated in 75% yield This intermediate is then transformed stereospecifically via a sulfoxide-assisted intramolecular 8, 2 process into formylchromene 25, which is a valuable chiron precursor to enantiomerically pure a-Tocopherol (Vitamin E, 26). [Pg.833]

The same authors also used this approach for an enantioselective synthesis of the natural product (-i-)-royleanone (4-54), a member of the abietane diterpenoid family [17]. The enantiopure sulfoxide 4-50 was oxidized using DDQ to give crude 1,4-ben-zoquinone 4-51, which by reaction with the diene 4-52 in CH2C12 under high pressure led to the tricyclic compound 4-53 with 97 % ee and 60% yield based on 4-50 (Scheme 4.11). Hydrogenation of the unconjugated double bond in 4-53 afforded 35% of the desired compound 4-54 after crystallization to separate it from the unwanted cis-isomer. [Pg.287]

The problem of the nucleophilicity of amides in glycosylation reactions is not limited to the sulfoxide method and has been shown to result in the formation of glycosyl imidates from intermolecular reaction with activated donors. It appears that this problem may be suppressed by the prior silylation of the amide [348,349]. Accordingly, it may be sufficient to operate the sulfoxide method with an excess of triflic anhydride when amides are present so as to convert all amides into O-triflyl imidates, which are then hydrolyzed on work-up. Despite these problems, several examples have been published of successful sulfoxide glycosylation reactions with acceptors carrying remote peptide bonds [344,345] and with donors coupled to resins via amide-based linkages [346,347], with no apparent problems reported. Sulfonamides and tertiary amides appear to be well tolerated by the sulfoxide method [340,350],... [Pg.257]

Sulfoxides have also been used in the synthesis of nucleoside analogs (Scheme 3.2). Chanteloup and Beau reported the synthesis of ribofuranosyl sulfoxide 13 and its use in the glycosylation of a series of silylated pyrimidine and purine bases.7 Although 16 is not an anomeric sulfoxide, its reaction with cytosine derivative 17 is conceptually related.8... [Pg.43]

An alternative route to enantiomeric methyl alkyl sulfoxides (95) is based on the reaction of aliphatic Grignard reagents with the dia-... [Pg.350]

The known dibromide 464 was converted in good yield to the dinitrile 465 by reaction with buffered potassium or sodium cyanide. Reaction of 2,5-dimethoxycarbonyl-3,4-dicyanomethylthiophene 465 with thionyl chloride and selenium oxychloride gave thieno[3,4-f]thiophene 466 and selenolo[3,4-f]thiophene 467, respectively (Scheme 57) <2002JOC2453>. In the case of thionyl chloride as the sulfur transfer reagent, an intermediate sulfoxide 468 must be involved, which then suffers a spontaneous base-catalyzed Pummerer reaction to give 466 in high yield. [Pg.52]

The benzothiadiazepine 1-oxides (550), formed by the reaction of the diaryl sulfoxides (549) with hydrazoic acid, rearrange on treatment with sodium hydroxide to give (551) (72CB757). The benzothiadiazine 1,1-dioxide (552) also undergoes base-induced ring expansion to give (553) (71JOC2968). [Pg.645]

The isomerization of allyl ethers to 1-propenyl ethers, which is usually performed with potassium tert-butoxide in dimethyl sulfoxide, can also be carried out under milder conditions using tris(triphen-ylphosphine)rhodium chloride,208 and by an ene reaction with diethyl azodicarboxylate,209,210 which affords a vinyl ether adduct. Removal of an O-allyl group may be achieved by oxidation with selenium dioxide in acetic acid,211 and by treatment with N-bromosuccinimide, followed by an aqueous base.201,212... [Pg.50]


See other pages where Sulfoxides reaction with bases is mentioned: [Pg.245]    [Pg.6636]    [Pg.230]    [Pg.88]    [Pg.216]    [Pg.300]    [Pg.740]    [Pg.742]    [Pg.829]    [Pg.833]    [Pg.119]    [Pg.740]    [Pg.742]    [Pg.829]    [Pg.360]    [Pg.348]    [Pg.131]    [Pg.434]    [Pg.585]    [Pg.257]    [Pg.312]    [Pg.155]    [Pg.412]    [Pg.172]    [Pg.24]    [Pg.1265]    [Pg.460]    [Pg.76]    [Pg.516]    [Pg.435]    [Pg.215]    [Pg.220]    [Pg.435]   
See also in sourсe #XX -- [ Pg.628 ]




SEARCH



Reaction with base

Reaction with sulfoxides

Sulfoxidation reactions

© 2024 chempedia.info