Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfate radical reactions

The carbocation may recombine with either of the two anions or react with water [reactions (103)-(105)]. When the carbocation combines with the sulfate radical [reaction (105)], an oxidizing species is formed which, however, is not as reactive as the sulfate radical but nevertheless contributes to the propagation of the chain with a slow rate k = 1.2 x 10 dm mof s ), and thus the chain length becomes dependent on the 1,3-dimethyluracil concentration. [Pg.543]

The use of free-radical reactions for this mode of ring formation has received rather more attention. The preparation of benzo[Z)]thiophenes by pyrolysis of styryl sulfoxides or styryl sulfides undoubtedly proceeds via formation of styrylthiyl radicals and their subsequent intramolecular substitution (Scheme 18a) (75CC704). An analogous example involving an amino radical is provided by the conversion of iV-chloro-iV-methylphenylethylamine to iV-methylindoline on treatment with iron(II) sulfate in concentrated sulfuric acid (Scheme 18b)(66TL2531). [Pg.100]

Kolthoff et al. [42] showed that the thermal decomposition of peroxydisulfate ion yielded two free sulfate radicals according to the following reaction ... [Pg.195]

Photolysis or thermolysis of persulfate ion (41) (also called peroxydisulfate) results in hoinolysis of the 0-0 bond and formation of two sulfate radical anions. The thermal reaction in aqueous media has been widely studied."51 232 The rate of decomposition is a complex function of pH, ionic strength, and concentration. Initiator efficiencies for persulfate in emulsion polymerization are low (0.1-0.3) and depend upon reaction conditions (Le. temperature, initiator concentration)."33... [Pg.94]

Two pathways for the reaction of sulfate radical anion with monomers have been described (Scheme 3.81).252 These are (A) direct addition to the double bond or (B) electron transfer to generate a radical cation. The radical cation may also be formed by an addition-elimination sequence. It has been postulated that the radical cation can propagate by either cationic or a radical mechanism (both mechanisms may occur simultaneously). However, in aqueous media the cation is likely to hydrate rapidly to give a hydroxyelhyl chain end. [Pg.129]

In the case of electron-deficient monomers (e.g, acrylics) it is accepted that reaction occurs by initial addition of the sulfate radical anion to the monomer. Reactions of sulfate radical anion with acrylic acid derivatives have been shown to give rise to the sulfate adduct under neutral or basic conditions but under acidic conditions give the radical cation probahly by an addition-elimination process. [Pg.129]

Hydroxy radical and sulfate radical anion, though they may sometimes give rise to similar products, show quite different selectivity in their reactions with unsaturated substrates. In particular, the sulfate radical anion has a somewhat lower propensity for hydrogen abstraction than the hydroxyl radical. For example, the sulfate radical anion shows little tendency to abstract hydrogen from mcthacrylic acid.232... [Pg.130]

Sulfate radical anion may be converted to the hydroxyl radical in aqueous solution. Evidence for this pathway under polymerization conditions is the formation of a proportion of hydroxy end groups in some polymerizations. However, the hydrolysis of sulfate radical anion at neutral pi I is slow (k— 107 M"1 s 1) compared with the rale of reaction with most monomers (Ar=l08-109 M 1 s 1, Table 3.7)440 under typical reaction conditions. Thus, hydrolysis should only be competitive with addition when the monomer concentration is very low. The formation of hydroxy end groups in polymerizations initiated by sulfate radical anion can also be accounted for by the hydration of an intermediate radical cation or by the hydrolysis of an initially formed sulfate adduct either during the polymerization or subsequently. [Pg.130]

When the initiation and termination reactions are the reverse of one another, the kinetic form is usually simpler than when the two are independent. Also, the transition-state composition follows directly from the rate law, which is why the term well-behaved is applied. Imagine, for example, that the termination step in the system most recently presented was the recombination of two sulfate radical ions rather than Eq. (8-38) ... [Pg.187]

Figure 4-13 shows an example from a three-dimensional model simulation of the global atmospheric sulfur balance (Feichter et al, 1996). The model had a grid resolution of about 500 km in the horizontal and on average 1 km in the vertical. The chemical scheme of the model included emissions of dimethyl sulfide (DMS) from the oceans and SO2 from industrial processes and volcanoes. Atmospheric DMS is oxidized by the hydroxyl radical to form SO2, which, in turn, is further oxidized to sulfuric acid and sulfates by reaction with either hydroxyl radical in the gas phase or with hydrogen peroxide or ozone in cloud droplets. Both SO2 and aerosol sulfate are removed from the atmosphere by dry and wet deposition processes. The reasonable agreement between the simulated and observed wet deposition of sulfate indicates that the most important processes affecting the atmospheric sulfur balance have been adequately treated in the model. [Pg.75]

In the context of diagenesis in recent anoxic sediments, reduced carotenoids, steroids, and hopanoids have been identified, and it has been suggested that reduction by sulhde, produced for example, by the reduction of sulfate could play an important part (Hebting et al. 2006). The partial reduction of carotenoids by sulfide has been observed as a result of the addition of sulfide to selected allylic double bonds, followed by reductive desulfurization. This is supported by the finding that the thiol in allylic thiols could be reductively removed by sulhde to produce unsaturated products from free-radical reactions (Hebting et al. 2003). [Pg.28]

Beitz T, W Bechmann, R Mitzner (1998) Investigations of reactions of selected azaarenes with radicals in water. 1. Hydroxyl and sulfate radicals. J Phys Chem A 102 6760-6765. [Pg.39]

Figure 28.21 The reactions of R u (11) pby 3 + are catalyzed by light at 452 nm that begins by forming an excited state intermediate. In the presence of persulfate, a sulfate radical is formed concomitant with the oxidative product Ru(III)bpy33+. This form of the chelate is able to catalyze the formation of a radical on a tyrosine phenolic ring that can react along with the sulfate radical either with a nucleophile, such as a cysteine thiol, or with another tyrosine side chain to form a covalent linkage. The result of this reaction cascade is to cause protein crosslinks to form when a sample containing these components is irradiated with light. Figure 28.21 The reactions of R u (11) pby 3 + are catalyzed by light at 452 nm that begins by forming an excited state intermediate. In the presence of persulfate, a sulfate radical is formed concomitant with the oxidative product Ru(III)bpy33+. This form of the chelate is able to catalyze the formation of a radical on a tyrosine phenolic ring that can react along with the sulfate radical either with a nucleophile, such as a cysteine thiol, or with another tyrosine side chain to form a covalent linkage. The result of this reaction cascade is to cause protein crosslinks to form when a sample containing these components is irradiated with light.
The oxidative degradations of binuclear azaarenes (quinoline, isoquinoline, and benzodrazines) by hydroxyl and sulfate radicals and halogen radicals have been studied under both photochemical and dark-reaction conditions. A shift from oxidation of the benzene moiety to the pyridine moiety was observed in the quinoline and isoquinoline systems upon changing the reaction from the dark to photochemical conditions. The results were interpreted using frontier-orbital calculations. The reaction of OH with the dye 3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-(l,8)(2//,5//)-acridinedione has been studied, and the transient absorption bands assigned in neutral solution.The redox potential (and also the pA a of the transient species) was determined. Hydroxyl radicals have been found to react with thioanisole via both electron transfer to give radical cations (73%) and OH-adduct formation (23%). The bimolec-ular rate constant was determined (3.5 x lO lmoU s ). " ... [Pg.146]

If the snlfate anion-radical is bonnd to the snrface of a catalyst (sulfated zirconia), it is capable of generating the cation-radicals of benzene and tolnene (Timoshok et al. 1996). Conversion of benzene on snlfated zirconia was narrowly stndied in a batch reactor under mild conditions (100°C, 30 min contact) (Farcasiu et al. 1996, Ghencin and Farcasin 1996a, 1996b). The proven mechanism consists of a one-electron transfer from benzene to the catalyst, with the formation of the benzene cation-radical and the sulfate radical on the catalytic snrface. This ion-radical pair combines to give a snrface combination of sulfite phenyl ester with rednced snlfated zirconia. The ester eventually gives rise to phenol (Scheme 1.45). Coking is not essential for the reaction shown in Scheme 1.45. Oxidation completely resumes the activity of the worked-out catalyst. [Pg.63]

This reaction resembles decarboxylation of carboxylates during electrode one-electron oxidation (Kolbe reaction). Kolbe reaction also consists of one-electron oxidation, decarboxylation, and culminates in dimerization of alkyl radicals just after their formation at the electrode surface. When the sulfate radical acts as a one-electron oxidant, the caboradical dimerization is hampered. The radicals can be used in preparative procedures. One typical example is alkylation of heterocyclic nitrogen bases (Minisci et al. 1983). This difference between Kolbe reaction and the reaction with the help of a dissolved electrode (the sulfate radical) deserves some explanation. The concentration of the one-electron oxidation products in the electrode vicinity is significantly higher than that in the bulk of the solution. Therefore, in the case of anode-impelled reactions, the dimerization of radicals produced from carboxylates proceeds easily. Noticeably, 864 secures the single electron nature of oxidation more strictly than an anode. In electrode reactions, radical intermediates can... [Pg.64]

Recently, the reaction between the sulfate radical anion and cyanuric acid, a nondegrad-able end product of the oxidative degradation of the triazine-based herbicide-atrazine, was reported. The degradation profile indicates that about 76% of the cyanuric acid has been decomposed after an absorbed y-radiation dose. It is therefore proposed that the reaction of peroxydisulfate could be utilized for the degradation of cyanuric acid in aqueous medium, which is important, since the latter is normally stable to further organic processes. [Pg.1011]

In addition, some of the key, free radical intermediates have other potential reactions that can impact the chemistry. The sulfate radical, S04 , for example, reacts rapidly with aromatics in solution (e.g., Herrmann et al., 1995 Huie, 1995), removing S04 from the sequence shown. [Pg.318]

Huie, R. E., and C. L. Clifton, Temperature Dependence of the Rate Constants for Reactions of the Sulfate Radical, S04, with Anions, J. Phys. Chem.., 94, 8561-8567 (1990). [Pg.342]

We have investigated the reactions of the COs " radicals with double-stranded DNA by laser flash photolysis techniques [15]. In these time-re-solved experiments, the COs radicals were generated by one-electron oxidation of HCOs by sulfate radical anions, SO4 the latter were derived from the photodissociation of persulfate anions, S20s initiated by 308-nm XeCl excimer laser pulse excitation. In air-equilibrated buffer solution containing the self-complementary oligonucleotide duplex d(AACGCGAATTCGCGTT), 208 , and an excess of HCO3., the decay of the CO3 radical anion absorption band at 600 nm is associated with the concomitant formation of the characteristic narrow absorption band of the G(-H) radicals near 310 nm. [Pg.150]

Huie, R.E. and Clifton, C.L., Temperature dependence of the rate constants for reactions of the sulfate radical, S04, with anions, ]. Phys. Chem., 94(23), 8561-8567,... [Pg.294]

Hildenbrand K (1995) Spin-trapping studies of the reaction of the sulfate radical ion with N1-substituted pyrimidine bases. Comparison with continuous-flow electron paramagnetic resonance experiments.) Chem Soc Perkin Trans 2 2153-2162 Hildenbrand K, Schulte-Frohlinde D (1997) Time-resolved EPR studies on the reaction rates of per-oxyl radicals of polyfacrylic acid) and of calf thymus DNA with glutathione. Re-examination of a rate constant for DNA. Int J Radiat Biol 71 377-385 Hildenbrand K, Behrens G, Schulte-Frohlinde D, Herak JN (1989) Comparison of the reaction OH and S04- radicals with pyrimidine nucleosides. An electron spin resonance study in aqueous solution. J Chem Soc Perkin Trans 2 283-289... [Pg.320]

Niehaus H, Hildenbrand K (2000) Continuous-flow and spin-trapping EPR studies on the reactions of cytidine induced by the sulfate radical-anion in aqueous solution. Evidence for an intermediate radical cation. J Chem Soc Perkin Trans 2 947-952 Niles JC, Burney S, Singh SP, Wishnok JS, Tannenbaum SR (1999) Peroxynitrie reaction products of 3, 5 -di-0-acetyl-8-oxo-7,8-dihydro-2 -deoxyguanosine. Proc Natl Acad Sci USA 96 11729-11734... [Pg.325]


See other pages where Sulfate radical reactions is mentioned: [Pg.544]    [Pg.544]    [Pg.202]    [Pg.381]    [Pg.129]    [Pg.633]    [Pg.100]    [Pg.32]    [Pg.304]    [Pg.1037]    [Pg.170]    [Pg.337]    [Pg.342]    [Pg.647]    [Pg.202]    [Pg.6]    [Pg.91]    [Pg.336]    [Pg.347]    [Pg.347]    [Pg.505]    [Pg.68]    [Pg.322]    [Pg.288]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Hydroxyl reaction with sulfate radical

Sulfate radicals

Sulfate reaction

Sulfate-Radical-Induced Reactions

Sulfation reaction

© 2024 chempedia.info