Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subsurface Solid Phase

The solid phase of the subsurface is a porous medium composed of a mixture of inorganic and organic natural materials in various stages of development. The surface area and the surface (chemical) properties of the solid phase are major factors that control the behavior of chemicals. [Pg.4]

Primary minerals with low surface area (e.g., sihca minerals) and low reactivity mainly affect the physical transport of water, dissolved chemicals, colloids, immiscible (in water) liqnids, and vapors. Secondary minerals generally have high surface area (e.g., clay minerals) and high reactivity that affect the transport of chemicals, their retention and release onto and from the solid phase, and their surface-induced transformations. The sohd phase also can indirectly induce the degradation of chemical compounds, through its effects on the water-air ratio in the system and, thus, on microbiological activity. [Pg.4]


Adsorption of nonionic compounds on subsurface solid phases is subject to a series of mechanisms such as protonation, water bridging, cation bridging, ligand exchange, hydrogen bonding, and van der Waals interactions. Hasset and Banwart (1989) consider that the sorption of nonpolar organics by soils is due to enthalpy-related and entropy-related adsorption forces. [Pg.46]

Chapter 5 discusses contaminant adsorption on geosorbents and includes a short description of the surface properties of adsorbents and the methodology for quantifying adsorption. The chapter continues with a presentation of adsorption of various types of toxic chemicals on the subsurface solid phase. In addition to physicochemical adsorption, contaminants can be retained in the subsurface by precipitation, deposition, and trapping. These topics, as well as hysteresis phenomena and formation of bound residues, are discussed. [Pg.92]

Understanding the kinetics of contaminant adsorption on the subsurface solid phase requires knowledge of both the differential rate law, explaining the reaction system, and the apparent rate law, which includes both chemical kinetics and transport-controlled processes. By studying the rates of chemical processes in the subsurface, we can predict the time necessary to reach equilibrium or quasi-state equilibrium and understand the reaction mechanism. The interested reader can find detailed explanations of subsurface kinetic processes in Sparks (1989) and Pignatello (1989). [Pg.102]

Early work by Boyd et al. (1947), performed on zeohtes, showed that the ion exchange process is diffusion controlled and the reaction rate is limited by mass transfer phenomena that are either film-diffusion (ED) or particle-diffusion (PD) dependent. Under natural conditions, the charge compensation cations are held on a representative subsurface solid phase as follows within crystals in interlayer... [Pg.107]

Independent of the molecular properties of contaminants, the subsurface solid phase constituents are a major factor that control the adsorption process. Both the mineral and organic components of the solid phases interact differentially with ionic and nonionic pollutants, and in all cases, environmental factors, such as temperature, subsurface water content, and chemistry, affect the mechanism, extent, and rate of contaminant adsorption. [Pg.112]

Contaminant precipitation involves accumulation of a substance to form a new bulk solid phase. Sposito (1984) noted that both adsorption and precipitation imply a loss of material from the aqueous phase, but adsorption is inherently two-dimensional (occurring on the solid phase surface) while precipitation is inherently three-dimensional (occurring within pores and along solid phase boundaries). The chemical bonds that develop due to formation of the solid phase in both cases can be very similar. Moreover, mixtures of precipitates can result in heterogeneous solids with one component restricted to a thin outer layer, because of poor diffusion. Precipitate formation takes place when solubility limits are reached and occurs on a microscale between and within aggregates that constitute the subsurface solid phase. In the presence of lamellar charged particles with impurities, precipitation of cationic pollutants, for example, might occur even at concentrations below saturation (with respect to the theoretical solubility coefficient of the solvent). [Pg.115]

It should be noted that, in the natural subsurface solid phase, differentiation between adsorption and precipitation can be very difficult, because the new sohd phase may precipitate homogeneously onto the surface of an existing sohd phase. Weathering may provide host surfaces for the more stable phase into which they transform chemically. [Pg.116]

The suspended solid particle size and the volume of effluent also must be considered in examining deposition in the subsurface. For example, under leaching of a waste disposal site or following irrigation with sewage effluent, the coarse fraction of suspended solids is retained in the upper layer, while the finer colloidal fraction is more mobile, and its transport is controlled by the porosity of the subsurface solid phase. [Pg.119]

Reversible and irreversible retention of contaminants on the subsurface solid phase is a major process in determining pollutant concentrations and controlling their redistribution from the land surface to groundwater. After being retained in the solid, contaminants may be released into the subsurface liquid phase, displaced as water-immiscible liquids, or transported into the subsurface gaseous phase or from the near surface into the atmosphere. The form and the rate of release are governed by the properties of both contaminant and solid phase, as well as by the subsurface environmental conditions. We consider here contaminants adsorbed on the solid phase. [Pg.120]

Genuine (true) and apparent hysteresis may be considered to explain contaminant release from the subsurface solid phase. Genuine hysteresis assumes that observed data are real and the equilibrium results can be explained on the basis of well-identified phenomena. Apparent hysteresis results from an experimental artifact due, for example, to a failure to reach retention or release equilibrium. [Pg.120]

Drying of the subsurface solid phase can cause an increase in the rate of desorption. If penetration of a sorbate toward inner surfaces does not reach its equilibrium by the time drying commences, a fraction of the sorbate may remain localized at more accessible outer surfaces in an amount greater than that corresponding to the equilibrium level. Under these conditions, the drying of the system may increase the rate of desorption during successive rewetting. [Pg.122]

The effect of aggregation of the subsurface solid phase on kerosene volatilization was studied by Fine and Yaron (1993), who compared the rate of aggregation in two size fractions of a vertisol soil the <1 mm fraction and 2 mm aggregates. The total porosity of these two fractions was similar (53% and 55% of the total volume, respectively). Differences in aggregation are reflected in the air permeability that is, their respective values were 0.0812 0.009 cm and 0.145 0.011 cm Figure 8.10 presents the volatilization of kerosene as affected by the soil aggregation, when the initial amount applied was equivalent to the retention capacity. The more permeable fraction releases kerosene faster and thus enhances volatilization. [Pg.160]

Retention of organic contaminants on subsurface solid phase constituents in general is not completely reversible, so that release isotherms differ from retention isotherms. As a consequence, the extent of sorption depends on the nature of the sorbent. Subsurface constituents as well as the types of bonding mechanisms between contaminants and the sohd phase are factors that control the release of adsorbed organic contaminants. Saltzman et al. (1972) demonstrated the influence of soil organic matter on the extent of hysteresis. Adsorption isotherms of parathion showed hysteresis (or apparent hysteresis) in its adsorption and desorption in a water solution. In contrast, smaller differences between the two processes were observed when the soils were pretreated with hydrogen peroxide (oxidized subsamples) to reduce initial organic matter content. The parathion content of the natural... [Pg.204]

After reaching the subsurface, contaminants are partitioned among the solid, liquid, and gaseous phases. A fraction of the contaminated gaseous phase is transported into the atmosphere, while the remaining part may be adsorbed on the subsurface solid phase or dissolved into the subsurface water. Contaminants dissolved in the subsurface aqueous phase or retained on the subsurface solid phase are subjected, over the course of time, to chemical, biochemical, and surface-induced degradation, which also lead to formation of metabolites. [Pg.271]

By complexation with various components of the natural subsurface solution, the initial properties of a toxic molecule can be changed. These transformations involve adsorption on the subsurface solid phase, transport into the saturated or partially saturated zone, and contaminant half-life in the subsurface environment. [Pg.284]

An additional environmental factor that may affect metal contaminant transformation in the subsurface is the air-water ratio. A toxic metal like mercury does not remain in a metallic form in an anaerobic environment. Microorganisms transform metallic mercury to methytmercury (CHj-Hg ") and dimethylmercury (CHj-Hg-CH3), which are volatile and absorbable by the organic fraction of the subsurface solid phase or subsurface microorganisms. [Pg.316]


See other pages where Subsurface Solid Phase is mentioned: [Pg.2]    [Pg.4]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.108]    [Pg.111]    [Pg.122]    [Pg.124]    [Pg.125]    [Pg.285]   


SEARCH



Subsurface

© 2024 chempedia.info