Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substructure database

Chemical Substructure Databases. Several patent databases are searchable by chemical substmcture (99). These are designed to give higher relevance of retrieval when searching chemical compounds than the bibHographic or full-text databases. [Pg.126]

Figure 3. A subset of the chemical substructures database, showing the hierarchical ordering. Figure 3. A subset of the chemical substructures database, showing the hierarchical ordering.
Today, fragment coding is still quite important in patent databases (sec Chapter 5, Section 5.11, e.g., Dei went) where Markush structures are also stored. There, the fragments can be applied to substructure or othei types of searches where the fragments arc defined, c.g., on the basis of chemical properties. [Pg.71]

The JME can also serve as a query input tool for structure databases by allowing creation of complex substructure queries (Figure 2-130), which are automatically translated into SMARTS [22]. With the help of simple HTML-format elements the creation of 3D structure queries is also possible, as were used in the 3D pharmacophore searches in the NCI database system [129]. Creation of reac-... [Pg.144]

Factual databases may provide the electronic version of printed catalogs on chemical compoimds. The catalogs of different suppliers of chemicals serve to identify chemical compounds with their appropriate synonyms, molecular formulas, molecular weight, structure diagrams, and - of course - the price. Sometimes the data are linked to other databases that contain additional information. Structure and substructure search possibihties have now been included in most of the databases of chemical suppliers. [Pg.240]

Besides structure and substructure searches, Gmclin provides a special search strategy for coordiuation compouuds which is found in no other database the ligand search system, This superior search method gives access to coordination compounds from a completely different point of view it is possible to retrieve all coordination compounds with the same ligand environment, independently of the central atom or the empirical formula of the compound. [Pg.249]

As already mentioned (Section 5.3), the stored structure information in this type of database makes it possible to search for chemical structures in several ways. One method is to draw a structure (via a molecule editor) and to perform either a precise structure search (full structure search) or a search containing part of the input structure (substructure search) (see Sections 6.2-6.4). The databases also allow the searching of chemical names and molecular formulas (see Section 6.1). The search results are in most cases displayed in a graphical manner. [Pg.262]

The Web-based graphical user interface permits a choice from numerous criteria and the performance of rapid searches. This service, based on the chemistry information toolkit CACTVS, provides complex Boolean searches. Flexible substructure searches have also been implemented. Users can conduct 3D pharmacophore queries in up to 25 conformations pre-calculated for each compound. Numerous output formats as well as 2D and 3D visuaHzation options are supplied. It is possible to export search results in various forms and with choices for data contents in the exported files, for structure sets ranging in size from a single compound to the entire database. Additional information and down-loadable files (in various formats) can be obtained from this service. [Pg.263]

DayCart is a software cartridge which offers a range of operation on an Oracle database, such as complete structure, similarity, and substructure search. The software can be obtained from Daylight Chemical Information Systems, Inc. (Mission Viejo CA) URL www.daylight.com... [Pg.315]

In order to perform a database search the structural key of the query molecule or substructure is compared with the stored structural keys of the database entries. This implies that each array element in the structural key has to be defined initi-... [Pg.403]

Several empirical approaches for NMR spectra prediction are based on the availability of large NMR spectral databases. By using special methods for encoding substructures that correspond to particular parts of the NMR spectrum, the correlation of substructures and partial spectra can be modeled. Substructures can be encoded by using the additive model greatly developed by Pretsch [11] and Clerc [12]. The authors represented skeleton structures and substituents by individual codes and calculation rules. A more general additive model was introduced... [Pg.518]

The spectral signals are assigned to the HOSE codes that represent the corresponding carbon atom. This approach has been used to create algorithms that allow the automatic creation of "substructure-sub-spectrum databases that are now used in systems for predicting chemical structures directly from NMR. [Pg.519]

A useful empirical method for the prediction of chemical shifts and coupling constants relies on the information contained in databases of structures with the corresponding NMR data. Large databases with hundred-thousands of chemical shifts are commercially available and are linked to predictive systems, which basically rely on database searching [35], Protons are internally represented by their structural environments, usually their HOSE codes [9]. When a query structure is submitted, a search is performed to find the protons belonging to similar (overlapping) substructures. These are the protons with the same HOSE codes as the protons in the query molecule. The prediction of the chemical shift is calculated as the average chemical shift of the retrieved protons. [Pg.522]

In a reaction, bonds are broken and made. In some cases free electrons are shifted also. The rcaciion center contains all the bond.s being broken or made during the reaction as well as all the electron rearrangement processes. The reaction uhstme-ture is the structural subunit of atoms and bonds around the reaction center that has to be present in a compound in order for the reaction to proceed in the foi"ward (synthesis) direction (Figure 10,3-32). Both characteristics of a reaction can be used to. search for reactions with an identical reaction center and reaction substructure but with different structural units beyond the reaction substructure. For example, this can be achieved by searching in a reaction database. [Pg.571]

Figure 10.3-42. Deriving the reaction substructure, A diFferent number of bond spheres around the strategic bond can be Included in the reaction substructure, thereby influencing the specificity of a search in a reaction database. Figure 10.3-42. Deriving the reaction substructure, A diFferent number of bond spheres around the strategic bond can be Included in the reaction substructure, thereby influencing the specificity of a search in a reaction database.
The position of the ehosen strategic bond locates the reaction center. To derive the reaction siibstrncture, the user can select the number of bond, spheres around the strategic bond which should be included. The reaction substructure obtained is then n.scd as the query for a reaction substructure search in the database. Figure 10,3-42 illustrates the first and second bond spheres around a selected strategic bond of a retrosynthetic step. [Pg.584]

Both precursors can be used as reactants in an aldol condensation. It has to be emphasized that the chlorine atom in 4 has to be considered as a representative for any electron-withdrawing group in particular, in the case presented here, it would best be taken as an OEt group. In order to verify this proposal, a reaction substructure search is initiated in the Chcmlnform reaction database of 1997. [Pg.589]

One of the hits found in the Chem Inform reaction database is shown in the window for reaction substructure searches in Figure 10.3-55. It fits the synthesis problem perfectly, since in the synthesis direction it forms the coumarin ring system directly, in one step. [Pg.590]

Computer Representations of Molecules, Chemical Databases and 2D Substructure Searching... [Pg.658]

Database searches can be used to find a reference to a known compound with a matching substructure. This is a particularly good technique if a portion of the molecule has an unusual structure. It may indicate a synthesis route or simply identify a likely starting material. [Pg.277]


See other pages where Substructure database is mentioned: [Pg.73]    [Pg.73]    [Pg.10]    [Pg.27]    [Pg.57]    [Pg.302]    [Pg.302]    [Pg.313]    [Pg.314]    [Pg.405]    [Pg.519]    [Pg.534]    [Pg.556]    [Pg.574]    [Pg.579]    [Pg.583]    [Pg.583]    [Pg.590]    [Pg.505]    [Pg.658]    [Pg.661]    [Pg.662]    [Pg.663]    [Pg.663]    [Pg.346]    [Pg.356]    [Pg.101]    [Pg.106]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Databases substructure-subspectra

ISIS databases substructure searching

Substructural

Substructure

© 2024 chempedia.info