Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution reactions, electrophilic reagents

Son ogashira reaction 182,279 SPOT synthesis 109 StUle reaction 159 Substitution reactions, electrophilic reagents 19... [Pg.309]

It has also been stated that the 5-position of selenazoles is more reactive toward electrophilic substitution than that of thiazoles. Such reactivity is still further increased by substituents in the 2-position of the selenazole ring, which can have an —E-effect. Simultaneously, however, an increasing tendency toward ring fission was observed by Haginiwa. Reactions of the selenazole ring are thus limited mainly to the 5-position which, specially in the 2-amino-and the 2-hydrazino-selenazoles, is easily substituted by electrophilic reagents. However, all attempts to synthesize selenazole derivatives by the Gattermann and by the Friedel-Crafts methods... [Pg.354]

Now let s consider the effect of the substrate on the rate of an E2 process. Recall from the previous chapter that Sn2 reactions generally do not occur with tertiary substrates, because of steric considerations. But E2 reactions are different than Sn2 reactions, and in fact, tertiary substrates often undergo E2 reactions quite rapidly. To explain why tertiary substrates will undergo E2 but not Sn2 reactions, we must recognize that the key difference between substitution and elimination is the role played by the reagent. In a substitution reaction, the reagent functions as a nucleophile and attacks an electrophilic position. In an elimination reaction, the reagent functions as a base and removes a proton, which is easily achieved even with a tertiary substrate. In fact, tertiary substrates react even more rapidly than primary substrates. [Pg.227]

The bromine atom has replaced an atom of hydrogen and so this is a substitution reaction. The reagent is electrophilic bromine and the molecule is aromatic so the reaction is electrophilic aromatic substitution and that is the subject of this chapter. We can compare the bromination of cyclohexene and of benzene directly. [Pg.550]

The starting material is benzene, and the product exhibits a disubstituted aromatic ring. This will require two successive aromatic substitution reactions. The reagent (the diol) is not a very strong nucleophile, nor is it a very strong electrophile. However, in acidic conditions, the diol exists in equilibrium with a very powerful electrophile (a carbocation), as shown ... [Pg.682]

The selectivity of an electrophile, measured by the extent to which it discriminated either between benzene and toluene, or between the meta- and ara-positions in toluene, was considered to be related to its reactivity. Thus, powerful electrophiles, of which the species operating in Friedel-Crafts alkylation reactions were considered to be examples, would be less able to distinguish between compounds and positions than a weakly electrophilic reagent. The ultimate electrophilic species would be entirely insensitive to the differences between compounds and positions, and would bring about reaction in the statistical ratio of the various sites for substitution available to it. The idea has gained wide acceptance that the electrophiles operative in reactions which have low selectivity factors Sf) or reaction constants (p+), are intrinsically more reactive than the effective electrophiles in reactions which have higher values of these parameters. However, there are several aspects of this supposed relationship which merit discussion. [Pg.141]

The scope of electrophilic aromatic substitution is quite large both the aromatic com pound and the electrophilic reagent are capable of wide variation Indeed it is this breadth of scope that makes electrophilic aromatic substitution so important Elec trophilic aromatic substitution is the method by which substituted derivatives of benzene are prepared We can gam a feeling for these reactions by examining a few typical exam pies m which benzene is the substrate These examples are listed m Table 12 1 and each will be discussed m more detail m Sections 12 3 through 12 7 First however let us look at the general mechanism of electrophilic aromatic substitution... [Pg.474]

Section 12 1 On reaction with electrophilic reagents compounds that contain a ben zene ring undergo electrophilic aromatic substitution Table 12 1 m Section 12 1 and Table 12 3 m this summary give examples... [Pg.508]

Isopentenyl pyrophosphate and dimethylallyl pyrophosphate are structurally sim liar—both contain a double bond and a pyrophosphate ester unit—but the chemical reactivity expressed by each is different The principal site of reaction m dimethylallyl pyrophosphate is the carbon that bears the pyrophosphate group Pyrophosphate is a reasonably good leaving group m nucleophilic substitution reactions especially when as in dimethylallyl pyrophosphate it is located at an allylic carbon Isopentenyl pyrophosphate on the other hand does not have its leaving group attached to an allylic carbon and is far less reactive than dimethylallyl pyrophosphate toward nucleophilic reagents The principal site of reaction m isopentenyl pyrophosphate is the carbon-carbon double bond which like the double bonds of simple alkenes is reactive toward electrophiles... [Pg.1087]

The general reactivity of higher a-olefins is similar to that observed for the lower olefins. However, heavier a-olefins have low solubihty in polar solvents such as water consequentiy, in reaction systems requiting the addition of polar reagents, apparent reactivity and degree of conversion maybe adversely affected. Reactions of a-olefins typically involve the carbon—carbon double bond and can be grouped into two classes (/) electrophilic or free-radical additions and (2) substitution reactions. [Pg.436]

The PMBs, when treated with electrophilic reagents, show much higher reaction rates than the five lower molecular weight homologues (benzene, toluene, (9-, m- and -xylene), because the benzene nucleus is highly activated by the attached methyl groups (Table 2). The PMBs have reaction rates for electrophilic substitution ranging from 7.6 times faster (sulfonylation of durene) to ca 607,000 times faster (nuclear chlorination of durene) than benzene. With rare exception, the PMBs react faster than toluene and the three isomeric dimethylbenzenes (xylenes). [Pg.504]

The enhancement of the electrophilic properties of thaHium(III) ttifluoroacetate makes it a very important thaHation reagent. The products of thaHation, eg, arylthaHium bis(ttifluoracetate), undergo a variety of substitution reactions, yielding iodides, fluorides, nitriles, thiophenols, phenols, and biaryls. [Pg.470]

In the case of phenazine, substitution in the hetero ring is clearly not possible without complete disruption of the aromatic character of the molecule. Like pyrazine and quinoxa-line, phenazine is very resistant towards the usual electrophilic reagents employed in aromatic substitution reactions and substituted phenazines are generally prepared by a modification of one of the synthetic routes employed in their construction from monocyclic precursors. However, a limited range of substitution reactions has been reported. Thus, phenazine has been chlorinated in acid solution with molecular chlorine to yield the 1-chloro, 1,4-dichloro, 1,4,6-trichloro and 1,4,6,9-tetrachloro derivatives, whose gross structures have been proven by independent synthesis (53G327). [Pg.164]

In contrast to electrophilic reagents, the highly -tt-deficient character of the pteridine nucleus is responsible for its vulnerability towards nucleophilic attack by a wide variety of reagents. The direct nucleophilic substitution of pteridine itself in a Chichibabin-type reaction with sodamide in diethylaniline, however, was unsuccessful (51JCS474). Pteridin-6-one, on the other hand, yielded pteridine-6,7-dione under the same conditions, via a still unknown reaction mechanism. [Pg.286]

The high reactivity of pyrroles to electrophiles is similar to that of arylamines and is a reflection of the mesomeric release of electrons from nitrogen to ring carbons. Reactions with electrophilic reagents may result in addition rather than substitution. Thus furan reacts with acetyl nitrate to give a 2,5-adduct (33) and in a similar fashion an adduct (34) is obtained from the reaction of ethyl vinyl ether with hydrogen bromide. [Pg.43]

The reactivity of five-membered rings with one heteroatom to electrophilic reagents has been quantitatively compared in a variety of substitution reactions. Table 2 shows the rates of substitution compared to thiophene for formylation by phosgene and iV,AT-dimethylfor-mamide, acetylation by acetic anhydride and tin(IV) chloride, and trifluoroacetylation with trifluoroacetic anhydride (71AHC(13)235). [Pg.43]

In view of the overall increased reactivity of furan compared with thiophene it would be anticipated that furan would be less regioselective in its reactions with electrophiles than thiophene. Possible reasons for the high regioselectivity of furan in electrophilic substitution reactions include complex formation between substrates and reagents and the ability of heteroatoms to assist in the stabilization of cationic intermediates (80CHE1195). [Pg.44]

The above considerations do not necessarily apply to reactions of electrophilic reagents with pyrazole and imidazole anions (108,109). The imidazole anion is sometimes substituted in the 2-position (113) and the indazole anion in the 3-position (cf. Section 4.02.1.4.5). [Pg.56]

Isothiazole itself is best prepared by the reaction between propynal, ammonia and sodium thiosulfate (see Section 4.17.9.3). A wide range of substituted mononuclear isothiazoles can be obtained by oxidative cyclization of y-iminothiols and related compounds (see Section 4.17.9.1.1). Substituents at the 3-position need to be in place before cyclization, but 4-substituents are readily introduced by electrophilic reagents (see Section 4.17.6.3), and 5-substituents via lithiation (see Section 4.17.6.4). [Pg.173]

Benzisothiazoles are best prepared by oxidative cyclization of o-aminothiobenz-amides (see Section 4.17.9.1.1), reaction of o-toluidines with thionyl chloride (see Section 4.17.9.2.1) or by sulfuration of 2,1-benzisoxazoles (see Section 4.17.10.2). 1,2-Benzisothiazoles can also be prepared from o-disubstituted benzene compounds, cyclodehydration of o-mercaptobenzaldoximes or oxidative cyclization of p-mercaptobenzylamines (see Section 4.17.9.1.1) being the most convenient. Both series of benzo compounds are readily substituted at the 5- and 7-positions by electrophilic reagents. [Pg.173]


See other pages where Substitution reactions, electrophilic reagents is mentioned: [Pg.41]    [Pg.122]    [Pg.41]    [Pg.41]    [Pg.235]    [Pg.184]    [Pg.235]    [Pg.6]    [Pg.182]    [Pg.71]    [Pg.465]    [Pg.292]    [Pg.38]    [Pg.28]    [Pg.79]    [Pg.88]    [Pg.87]    [Pg.551]    [Pg.579]   
See also in sourсe #XX -- [ Pg.19 ]

See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Electrophilic substitution reaction

Reagent electrophilic

Substitution reactions electrophile

Substitution reactions reagents

© 2024 chempedia.info