Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituted polymer

The thermal stability of polymers of types (1) and (2) is also dependent on the nature of the substituents on phosphoms. Polymers with methoxy and ethoxy substituents undergo skeletal changes and degradation above about 100°C, but aryloxy and fluoroalkoxy substituents provide higher thermal stability (4). Most of the P—N- and P—O-substituted polymers either depolymerize via ring-chain equilibration or undergo cross-linking reactions at temperatures much above 150—175°C. [Pg.257]

Applications. Among the P—O- and P—N-substituted polymers, the fluoroalkoxy- and aryloxy-substituted polymers have so far shown the greatest commercial promise (14—16). Both poly[bis(2,2,2-trifluoroethoxy)phosphazene] [27290-40-0] and poly(diphenoxyphosphazene) [28212-48-8] are microcrystalline, thermoplastic polymers. However, when the substituent symmetry is dismpted with a randomly placed second substituent of different length, the polymers become amorphous and serve as good elastomers. Following initial development of the fluorophosphazene elastomers by the Firestone Tire and Rubber Co., both the fluoroalkoxy (EYPEL-F) and aryloxy (EYPEL-A) elastomers were manufactured by the Ethyl Corp. in the United States from the mid-1980s until 1993 (see ELASTOLffiRS,SYNTHETic-PHOSPHAZENEs). [Pg.257]

Synthesis. The first hiUy alkyl/aryl-substituted polymers were reported in 1980 via a condensation—polymeri2ation route. The method involves, first, the synthesis of organophosphine-containing alkyl or aryl substituents, followed by the ready oxidation of the phosphine to a phosphorane with leaving groups suitable for a 1,2-elimination reaction. This phosphorane is then thermally condensed to polymers in which all phosphoms atoms bear alkyl or aryl substituents. This condensation synthesis is depicted in Eigure 2 (5—7,64). [Pg.258]

The bulk polycondensation of (10) is normally carried out in evacuated, sealed vessels such as glass ampules or stainless steel Parr reactors, at temperatures between 160 and 220°C for 2—12 d (67). Two monomers with different substituents on each can be cocondensed to yield random copolymers. The by-product sdyl ether is readily removed under reduced pressure, and the polymer purified by precipitation from appropriate solvents. Catalysis of the polycondensation of (10) by phenoxide ion in particular, as well as by other species, has been reported to bring about complete polymerisation in 24—48 h at 150°C (68). Catalysis of the polycondensation of phosphoranimines that are similar to (10), but which yield P—O-substituted polymers (1), has also been described and appears promising for the synthesis of (1) with controlled stmctures (69,70). [Pg.259]

Routes to prepare substituted polymer directly were pioneered with the polymerization of /V-trimethy1si1y1phosphoranamines to form low to moderate molecular weight polyphosphazenes (6) where R is alkyl or aryl (8). [Pg.526]

This polymer first appeared commercially in 1965 (Parylene N Union Carbide). It is prepared by a sequence of reactions initiated by the pyrolysis of p-xylene at 950°C in the presence of steam to give the cyclic dimer. This, when pyrolysed at 550°C, yields monomeric p-xylylene. When the vapour of the monomer condenses on a cool surface it polymerises and the polymer may be stripped off as a free film. This is claimed to have a service life of 10 years at 220°C, and the main interest in it is as a dielectric film. A monochloro-substituted polymer (Parylene C) is also available. With both Parylene materials the polymers have molecular weights of the order of 500 000. [Pg.586]

A comparison of the absorption and emission spectra of Ooct-OPV5 with those of the fully conjugated, similarly substituted polymer Ooct-PPV shows that the absorption and luminescence maxima of the five-ring model compound are only slightly blue-shifted relative to those of the polymer (see Fig. 16-11). Hence, the... [Pg.299]

The optical properties can be tuned by variations of the chromophores (e.g. type of side-chains or length of chromophorc). The alkyl- and alkoxy-substituted polymers emit in the bluc-gnecn range of the visible spectrum with high photolu-inincsccncc quantum yields (0.4-0.8 in solution), while yellow or red emission is obtained by a further modification of the chemical structure of the chromophores. For example, cyano substitution on the vinylene moiety yields an orange emitter. [Pg.629]

The intrinsic ion-exchange properties of p-doped polymers have been used to bind electrocatalytic anions such as porphyrins238 and phthalocy-anines.239 Cation-substituted polymers have been used to bind anions such as [Fe(CN)6]3-/4-,235 oxometallates,240 and porphyrins241 and anion-substituted polymers have been used to bind a variety of cationic species such as [Co(2,2/-bipyridine)3]3+/2+)58 [Ru(NH3)6]3+/ 2+,183 and porphyrins.242... [Pg.589]

The gum-like co-substituted polymers VI have lower Tg than polymers VII, which form excellent films. The highest ionic conductivity at 25 °C reported for the VI and VII/LiN(S02CF3)2 complexes are 3.5x10" and 2.4x10 S cm" for VI (x=7.3 ) and VII (x=7.3) complexed with 0.328 and 0.5 mol salt/polymer repeat unit, respectively [604]. [Pg.206]

A number of publications have discussed the characterization of the substituted polymers (4.5,7,8,9). However, because of the poor hydrolytic stability of the chloropolymer, characterization of it has been rather difficult and slow to develop, and the literature is rather scant in this regard (10,ip. Conclusions about the struct are and polymerization mechanism of the chloropolymer have sometimes been drawn from the analysis of the substituted polymers. These conclusions, of course, assume that there is very little, if any, change of the chloropol pier chain structure during the substitution reaction. It was felt that a direct analysis of the chloropolymer may lead to a more accurate understanding of both the polymer structure and the polymerization mechanism. [Pg.255]

The chemical modification of poly (2,6-dimethyl-l,4-phenylene oxide) (PPO) by several polymer analogous reactions is presented. The chemical modification was accomplished by the electrophilic substitution reactions such as bromination, sulfonylation and acylation. The permeability to gases of the PPO and of the resulting modified polymers is discussed. Very good permeation properties to gases, better than for PPO were obtained for the modified structures. The thermal behavior of the substituted polymers resembled more or less the properties of the parent polymer while their solution behavior exhibited considerable differences. [Pg.46]

The 29Si NMR spectra are of particular interest because they reflect the configuration of the polymer chain.(33) Some 29Si spectra of alkylpolysilanes are shown in Figure 5. Symmetrically-substituted polymers such as (n-hexyl2Si)a have no chirality since there can be a plane of symmetry through each silicon atom. [Pg.14]

All of the soluble polymers (1 and 3-6) give high resolution NMR spectra (1H, 13C, and 31P) that are completely consistent with their proposed structures. As observed for other types of poly(phosphazenes), the 31P chemical shifts of these alkyl/aryl substituted polymers are consistently ca. 15-30 ppm upfield from those of the analogous cyclic trimers and tetramers. Some important structural information is provided by 13C NMR spectroscopy, particularly for the phenyl/alkyl derivatives 3 and 4. These polymers are rare examples of phos-phazenes that contain two different substituents at each phosphorus atom in the chain. Thus, they have the possibility of being stereoregular. The fact that the structures are completely atactic, however, is confirmed by the observation of three doublets in the P-Me region of the 13C NMR spectrum (ca. 22 ppm) in a 1 2 1 intensity ratio. [Pg.285]

Thermogravimetric analysis (TGA) of these poly(phosphazenes) shows their decomposition onset temperatures in an inert atmosphere to be ca. 350 to 400°C, depending on the side group. These temperatures are ca. 25-75°C higher than that reported for commercial materials based on the fluoroalkoxy substituted polymer, [(CFgCHjO PN],. (19) Interestingly, methyl rather than phenyl side groups yield the more stable materials, as shown by... [Pg.286]

Samples of the poly(dialkylphosphazenes) 1 and 2 displayed X-ray powder diffraction patterns characteristic of crystalline regions in the materials. The peaks in the diffraction pattern of 1 were of lower amplitude and greater angular breadth than those of 2. These data indicate that poly(diethylphosphazene) (2) is highly crystalline while poly(dimethyl-phosphazene) (1) is more amorphous with smaller crystalline zones. This high degree of crystallinity is probably responsible for the insolubility of 2 as noted above. All of the phenyl substituted polymers 3-6 were found to be quite amorphous in the X-ray diffraction studies, a result that is further evidence for an atactic structure of the poly(alkylphenylphosphazenes) 3 and 4 and for a random substitution pattern in the copolymers 5 and 6. [Pg.287]

The synthesis of luminescent organoboron quinolate polymers (21) (Fig. 15) via a three-step procedure starting from a silylated polystyrene has been communicated. The synthesis was initiated by the highly selective borylation of poly (4-trimethylsilylstyrene) (PS-Si), followed by the replacement of the bromine substituents in poly(4-dibromoborylstyrene) (PS-BBr) with substituted thienyl groups (R = H, 3-hexyl, 5-hexyl). In the final step, the 8-hydroxyquinolato moiety was introduced. The hexyl-substituted polymers efficiently emitted light at 513-514nm upon excitation at 395 nm.40... [Pg.30]

Jakle and Wagner have communicated the synthesis of bromo-substituted, boranediyl-bridged poly(ferrocenylene)s (40) (Fig. 28) by the reaction of Fc(BBr2)2 with three equivalents of HSiEt3. The polymer 40 was transformed into the corresponding mesityl-substituted polymer (40Mes) by treating its slurry in toluene with... [Pg.37]

Fig. 2 A,B. Application of cationic polymerization for neobiopolymer synthesis. A Mechanism of polymerization. B Minoda s use of Higashimura and Sawamoto s initiating system to generate a protected glucose-substituted polymer... Fig. 2 A,B. Application of cationic polymerization for neobiopolymer synthesis. A Mechanism of polymerization. B Minoda s use of Higashimura and Sawamoto s initiating system to generate a protected glucose-substituted polymer...
Fig.3A-D. Use of ring-opening polymerization (ROP) for neobiopolymer synthesis A General mechanism of cationic ROP. B Okada s use of cationic ROP to generate polymers with carbohydrate substituents at the terminus. C General mechanism for anionic ROP. D Okada s application of anionic ROP to generate carbohydrate-substituted polymers... [Pg.213]


See other pages where Substituted polymer is mentioned: [Pg.258]    [Pg.259]    [Pg.259]    [Pg.260]    [Pg.262]    [Pg.263]    [Pg.376]    [Pg.715]    [Pg.769]    [Pg.148]    [Pg.346]    [Pg.240]    [Pg.212]    [Pg.373]    [Pg.21]    [Pg.56]    [Pg.8]    [Pg.43]    [Pg.46]    [Pg.286]    [Pg.286]    [Pg.294]    [Pg.234]    [Pg.353]    [Pg.212]   


SEARCH



1 -Substituted polymers from

Alcohol-substituted polymers from

Alkyl ether-substituted polymers

Alkyl-substituted polymers

Bone graft substitutes polymers

Branched methyl-substituted polymers

Carboxyl-substituted polymers from

Carboxyl-substituted polymers from carbon dioxide

Chemical synthesis, polymers substitution

Conductive Electroactive Polymers substitution

Conjugated polymers substitutes

Ether-substituted polymers

Fluorine-substituted polymers

Fluoro-substituted polymers

Generate Carbohydrate-Substituted Polymers

High molecular weight polymers substitution polymerization

Inter-Polymer Substitution

Iron polymers substitution polymerization

Ketone-substituted Polymers

Light emitting polymers phenyl substituted PPVs

Linear polymers, substituted

MODIFICATION substituted polymers, preparation

Methyl-substituted PPP-type ladder polymers

Molar substitution cellulose polymer

Optically active polymers substituted

Organometallic polymers nucleophilic substitution

Poly substituted polymers

Polyacetylenes substituted polymers highly permeable

Polymer reaction aromatic substitution

Polymer structure, phenyl-substituted

Polymer, boronic acid-substituted

Polymers carbohydrate-substituted

Polymers from substituted lactic acids

Polymers from substituted styrenes

Polymers with Flexible Substitutents

Polymers with Substituted Arylamino Groups

Polymers, functionalized nucleophilic substitution with

Polymers, hydroxy substituted

Polysilylenes substituted polymers

Redox-center-substituted polymers

Silyl-substituted polymers from

Substituted polysiloxane polymers

Substituting polymers

Substituting polymers

Substitution Reactions of Halogen-Bearing Polymers

Substitution Reactions of Polymers with Aromatic Rings

Substitution reaction of polymers

© 2019 chempedia.info