Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituents, definition

Most importantly, the careful choice of bulky and electron-donating substituents definitively plays a key role in the successful isolation of kinetically stable Si-Si compounds containing Si=Si, Si=Si, and Si=Si=Si bonds. The first kinetically stable Si=Si compound is isolated by photolysis of trisilane carrying two 2,4,6-trymethylphenyl (mesityl) groups, which are two-fold symmetry bulky aromatics, by West, et al. three decades ago (Chart 13.15). [Pg.303]

A plot against Hammett s cr-constants of the logarithms of the rate constants for the solvolysis of a series of Mz-substituted dimethylphenylcarbinyl chlorides, in which compounds direct resonance interaction with the substituent is not possible, yielded a reasonably straight line and gave a value for the reaction constant (p) of — 4 54. Using this value of the reaction constant, and with the data for the rates of solvolysis, a new set of substituent parameters (cr+) was defined. The procedure described above for the definition of cr+, was adopted for... [Pg.138]

The same kind of spontaneous racemization oc curs for any as 1 2 disubstituted cyclohexane in which both substituents are the same Because such compounds are chiral it is incorrect to speak of them as meso compounds which are achiral by definition Rapid chair-chair interconversion however converts them to a 1 1 mixture of enantiomers and this mix ture IS optically inactive... [Pg.305]

Just as it is not necessary for polymer chains to be linear, it is also not necessary for all repeat units to be the same. We have already mentioned molecules like proteins where a wide variety of different repeat units are present. Among synthetic polymers, those in which a single kind of repeat unit are involved are called homopolymers, and those containing more than one kind of repeat unit are copolymers. Note that these definitions are based on the repeat unit, not the monomer. An ordinary polyester is not a copolymer, even though two different monomers, acids and alcohols, are its monomers. By contrast, copolymers result when different monomers bond together in the same way to produce a chain in which each kind of monomer retains its respective substituents in the polymer molecule. The unmodified term copolymer is generally used to designate the case where two different repeat units are involved. Where three kinds of repeat units are present, the system is called a terpolymer where there are more than three, the system is called a multicomponent copolymer. The copolymers we discuss in this book will be primarily two-component molecules. We shall discuss copolymers in Chap. 7, so the present remarks are simply for purposes of orientation. [Pg.10]

Next we turn to the magnitudes of the p constants. Evidently if p = 0, there is no substituent effect on reactivity. Moreover because p = -I-1.000 by definition for the aqueous ionization of benzoic acids, we have a scale calibration of sorts. Wiberg gives examples of p as a measure of the extent of charge development in the transition state. McLennan" has pointed out that p values must first be adjusted for the transmission factor before they can be taken as measures of charge devel-... [Pg.331]

Taft began the LFER attack on steric effects as part of his separation of electronic and steric effects in aliphatic compounds, which is discussed in Section 7.3. For our present purposes we abstract from that treatment the portion relevant to aromatic substrates. Hammett p values for alkaline ester hydrolysis are in the range +2.2 to +2.8, whereas for acid ester hydrolysis p is close to zero (see Table 7-2). Taft, therefore, concluded that electronic effects of substituents are much greater in the alkaline than in the acid series and. in fact, that they are negligible in the acid series. This left the steric effect alone controlling relative reactivity in the acid series. A steric substituent constant was defined [by analogy with the definition of cr in Eq. (7-22)] by Eq. (7-43), where k is the rate constant for acid-catalyzed hydrolysis of an orr/to-substituted benzoate ester and k is the corresponding rate constant for the on/to-methyl ester note that CH3, not H, is the reference substituent. ... [Pg.335]

Many other definitions of an ortho substituent constant have been made Shorter has reviewed these. Charton analyzed Oo in terms of Oi and CTr, i.e., = a(Ti -I- fpoR, finding that the distribution of inductive and resonance effects (the ratio a/b) varies widely with the substituent and, therefore, that no general Oo scale is possible. Charton also subjected to analysis according to Eq. (7-47),... [Pg.336]

Instead of the definition in Eq. (7-82), the selectivity is often written as log k,). Another way to consider a selectivity-reactivity relationship is to compare the relative effects of a series of substituents on a pair of reactions. This is what is done when Hammett plots are made for a pair of reactions and their p values are compared. The slope of an LEER is a function of the sensitivity of the process being correlated to structural or solvent changes. Thus, in a family of closely related LFERs, the one with the steepest slope is the most selective, and the one with the smallest slope is the least selective.Moreover, the intercept (or some arbitrarily selected abscissa value, usually log fco for fhe reference substituent) should be a measure of reactivity in each reaction series. Thus, a correlation should exist between the slopes (selectivity) and intercepts (reactivity) of a family of related LFERs. It has been suggested that the slopes and intercepts should be linearly related, but the conditions required for linearity are seldom met, and it is instead common to find only a rough correlation, indicative of normal selectivity-reactivity behavior. The Br nsted slopes, p, for the halogenation of a series of carbonyl compounds catalyzed by carboxylate ions show a smooth but nonlinear correlation with log... [Pg.372]

This approach to separating the different types of interaetions eontributing to a net solvent effeet has elieited much interest. Tests of the tt, a, and p seales on other solvatochromie or related proeesses have been made, an alternative tt seale based on ehemieally different solvatochromie dyes has been proposed, and the contribution of solvent polarizability to ir has been studied. Opinion is not unanimous, however, that the Kamlet-Taft system eonstitutes the best or ultimate extrathermodynamie approaeh to the study of solvent effeets. There are two objections One of these is to the averaging process by which many model phenomena are eombined to yield a single best-fit value. We eneountered this problem in Section 7.2 when we eonsidered alternative definitions of the Hammett substituent eonstant, and similar eomments apply here Reiehardt has diseussed this in the eontext of the Kamlet-Taft parameters. - The seeond objeetion is to the elaim of generality for the parameters and the eorrelation equation we will return to this eontroversy later. [Pg.440]

Probably the most important development of the past decade was the introduction by Brown and co-workers of a set of substituent constants,ct+, derived from the solvolysis of cumyl chlorides and presumably applicable to reaction series in which a delocalization of a positive charge from the reaction site into the aromatic nucleus is important in the transition state or, in other words, where the importance of resonance structures placing a positive charge on the substituent - -M effect) changes substantially between the initial and transition (or final) states. These ct+-values have found wide application, not only in the particular side-chain reactions for which they were designed, but equally in electrophilic nuclear substitution reactions. Although such a scale was first proposed by Pearson et al. under the label of and by Deno et Brown s systematic work made the scale definitive. [Pg.211]

Recently a definitive study of several isoxazol-5-ones using infrared and ultraviolet spectroscopy (Table I) has shown that the balance between the various tautomers is a delicate one and that all three of the structural types can predominate depending upon the nature of the substituents and the conditions of the experiment. However, the hydroxy form is only found when it is stabilized by chelation (i.e., a carbonyl substituent in the 4-position). The other compounds exist in the CH form in nonpolar media increasing polarity of the solvent stabilizes increasing amounts of the more polar NH forms. [Pg.38]

Most monomers have an asymmetric substitution pattern and the two ends of the double bond are distinct. For mono- and 1,1-disubstituted monomers (Section 4,3.1) it is usual to call the less substituted end "the tail" and the more substituted end "the head". Thus the terminology evolved for two modes of addition head and tail and for the three types of linkages hcad-to-tail, hcad-to-hcad and tail-to-ta.il. For 1,2-di-, tri- and tetrasubstituted monomers definitions of head and tail are necessarily more arbitrary. The term "head" has been used for that end with the most substituents, the largest substituents or the best radical stabilizing substituent (Scheme 4.4). [Pg.176]

In summary we think that, on a superficial basis, a comparison of the effects of different nucleophilic species added covalently at the (3-nitrogen atom of an arenedi-azonium ion yields results that are almost trivial. Of more interest are unexpected results such as those of Exner and Lakomy for the substituent -N = CHC6H5. A possible explanation for the latter results emerged when the twisted structure of the substituent became known. We emphasize, however, that definitive explanations on the basis of Hammett or related substituent constants are not found very frequently. [Pg.155]


See other pages where Substituents, definition is mentioned: [Pg.534]    [Pg.534]    [Pg.95]    [Pg.116]    [Pg.216]    [Pg.414]    [Pg.518]    [Pg.162]    [Pg.48]    [Pg.318]    [Pg.345]    [Pg.190]    [Pg.217]    [Pg.254]    [Pg.68]    [Pg.214]    [Pg.218]    [Pg.91]    [Pg.331]    [Pg.501]    [Pg.509]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Substituent definition

© 2024 chempedia.info