Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substituent effects Hammett equation

The substrate behavior and the influence of the substituent groups on the properties of the polymerized aniline derivatives were investigated by comparing the effects of the Hammett constants of the substituents. The Hammett equation (Hammett relation) is given as ... [Pg.75]

There were two schools of thought concerning attempts to extend Hammett s treatment of substituent effects to electrophilic substitutions. It was felt by some that the effects of substituents in electrophilic aromatic substitutions were particularly susceptible to the specific demands of the reagent, and that the variability of the polarizibility effects, or direct resonance interactions, would render impossible any attempted correlation using a two-parameter equation. - o This view was not universally accepted, for Pearson, Baxter and Martin suggested that, by choosing a different model reaction, in which the direct resonance effects of substituents participated, an equation, formally similar to Hammett s equation, might be devised to correlate the rates of electrophilic aromatic and electrophilic side chain reactions. We shall now consider attempts which have been made to do this. [Pg.137]

Hammett s equation, and substituent effects, 137-43 heteromolecules, 130 Holleman s product rule, 3 hyperconjugation, in nitration of alkyl-benzenes, 165-7 in nitration of positive poles, 169... [Pg.239]

The Hammett equation in the form of Eq. (4.14) or Eq. (4.15) is free of complications due to steric effects, since it is applied only to meta and para substituents. The geometry of the benzene ring ensures that groups in these positions cannot interact stoically with the site of reaction. Tables of a values for many substituents have been collected some values are given in Table 4.5, but substituent constants are available for a much wider range of... [Pg.207]

Because the substituent groups have a direct resonance interaction with the charge that develops in the a-complex, quantitative substituent effects exhibit a high resonance component. Hammett equations usually correlate best with the substituent constants (see Section 4.3). ... [Pg.557]

Nevertheless, many free-radical processes respond to introduction of polar substituents, just as do heterolytic processes that involve polar or ionic intermediates. The substituent effects on toluene bromination, for example, are correlated by the Hammett equation, which gives a p value of — 1.4, indicating that the benzene ring acts as an electron donor in the transition state. Other radicals, for example the t-butyl radical, show a positive p for hydrogen abstraction reactions involving toluene. ... [Pg.700]

The Hammett equation and LFER in general added no new concepts to the qualitative picture that had been built up of electronic effects in organic reactions, but they did provide a quantitative measure that had been lacking and that has been found very useful. Here we will describe the further development of ideas concerning the substituent constant. [Pg.324]

In the manner outlined, a few attempts have been made to apply the Hammett equation to the transmission of substituent effects in the pyridine series. In the alkaline hydrolysis of 5-substituted ethyl picolinates (5-R-2-COOEt) in 85% ethanol at 25, 35, and 45°, the reaction constants are about 60% as large as those in the corresponding benzene series the overall fit to the Hammett equation, however, is at best fair, since out of four points (R = Et, H, I, Ac) one (Ac) deviates widely. [Pg.237]

Following the suggestion of Taft, substituent effects can be stored in c-imits by use of the Hammett equation for any category of reaction according to Eq. (13). [Pg.336]

The second aspect is more fundamental. It is related to the very nature of chemistry (quantum chemistry is physics). Chemistry deals with fuzzy objects, like solvent or substituent effects, that are of paramount importance in tautomerism. These effects can be modeled using LFER (Linear Free Energy Relationships), like the famous Hammett and Taft equations, with considerable success. Quantum calculations apply to individual molecules and perturbations remain relatively difficult to consider (an exception is general solvation using an Onsager-type approach). However, preliminary attempts have been made to treat families of compounds in a variational way [81AQ(C)105]. [Pg.11]

Substituent effects as evaluated on the basis of the Hammett equation and its extended forms, are - this has to be emphasized again — empirical results. Nevertheless, it is very soothing to know that theoretical approaches, i. e., calculations of substituent effects using ab initio molecular orbital theory (Topsom, 1976, 1981, 1983 Taft and Topsom, 1987, STO-3G and 4-31G level), give results that are consistent with the experimental data. However, it is not recommended to use only theoretically calculated substituent constants and values for F, R, and other parameters for the interpretation of experimental data. [Pg.150]

Before we close this section we make reference to an extended form of the Hammett equation in which the substituent constant and the reaction constant are separated into contributions from the field effect (F) and the mesomeric effect (R). This procedure was suggested by Taft in 1957 for 4-substituted benzene derivatives. It is called a dual substituent parameter (DSP) equation (Scheme 7-2). [Pg.150]

DSP treatments allow one to separate the field and mesomeric effects of substituents on chemical reactivities and physical properties (electronic and NMR spectra, etc.) of organic compounds. In Section 8.3 we will discuss heterolytic dediazoniation of substituted benzenediazonium ions. For this series of reactions the classical Hammett equation completely fails to give useful results (see Fig. 8-1), but the DSP treatment yields a good and mechanistically very meaningful correlation. [Pg.151]

Over the years, the Hammett equation has been modified many times, usually by defining an alternative scale of a constants, the better to allow for special features found in some mechanisms, such as resonance stabilization and mesomeric effects. Thus, there are substituent scales known at cr+, er , crj, etc. The reader is referred to specialized treatises for further details.5-811... [Pg.228]

The special substituent constants for + R para-substituents are denoted by a, and those for — R para-substituents are denoted by a+ 54. They are based respectively on the reaction series discussed above. Selected values are given in Table 1. Characteristic a or a+ values are sometimes distinguished for meta-substituents also, but only for a minority of substituents which show very marked + R or — R effects do these differ significantly from ordinary a values. The range of applicability of the Hammett equation is greatly extended by means of a and cr+, notably to nucleophilic (by a ) and to electrophilic (by cr+) aromatic substitution. [Pg.496]

There are almost no studies of substituent effects on additions to carbon-carbon triple bonds extant in the literature. Bowden and Price (208) have reported a correlation of rates of addition of hydrogen bromide to 3-substituted propiolic acids with the Hammett equation using the Op constants. Unfortunately, there are only three substituents in the set. Sufficient data are available for a single set of 1,3-dipolar cycloaddition. The set studied is shown in Table XXXIII, and the results of the correlation are in Table XXXIV. The correlation was significant the delocalized effect is predominant in this set. [Pg.156]

In the application of the extended Hammett equation to the system XGY, where X is a substituent and Y is a reaction site, both of which are attached to the skeletal group G, the question of the degree of transmission of substituent effects through G arises. The transmitivity of G is measured by the magnitude of a and (3. Now,... [Pg.175]

Jaffe (1953) showed that while many rate or equilibrium data conform well to the Hammett equation (as indicated by the correlation coefficient), many such data are outside the scope of the equation in its original form and mode of application. Deviations are commonly shown by para-substituents with considerable -I-1 or —R effect. Hammett himself found that P-NO2 (+R) showed deviations in the correlation of reactions of anilines or phenols. The deviations were systematic in that a a value of ca. 1.27 seemed to apply, compared with 0.78 based on the ionization of p-nitrobenzoic acid. Other examples were soon discovered and it became conventional to treat them similarly in terms of a duality of substituent constants . [Pg.495]

Finally, in this account of multiparameter extensions of the Hammett equation, we comment briefly on the origins of the a, scale. This had its beginning around 1956 in the a scale of Roberts and Moreland for substituents X in the reactions of 4-X-bicyclo[2.2.2]octane-l derivatives. However, at that time few values of o were available. A more practical basis for a scale of inductive substituent constants lay in the o values for XCHj groups derived from Taft s analysis of the reactivities of aliphatic esters into polar, steric and resonance effects . For the few o values available it was shown that o for X was related to o for XCHj by the equation o = 0.45 <7. Thereafter the factor 0.45 was used to calculate c, values of X from o values of XCH2 . ... [Pg.498]


See other pages where Substituent effects Hammett equation is mentioned: [Pg.143]    [Pg.242]    [Pg.208]    [Pg.213]    [Pg.216]    [Pg.238]    [Pg.243]    [Pg.253]    [Pg.259]    [Pg.336]    [Pg.341]    [Pg.150]    [Pg.494]    [Pg.504]    [Pg.507]    [Pg.521]    [Pg.525]    [Pg.83]    [Pg.85]    [Pg.90]    [Pg.107]    [Pg.125]    [Pg.131]    [Pg.133]    [Pg.182]    [Pg.494]    [Pg.504]    [Pg.507]   
See also in sourсe #XX -- [ Pg.474 , Pg.475 , Pg.476 ]

See also in sourсe #XX -- [ Pg.453 ]




SEARCH



Hammett effect

Hammett equation

Substituent equation

© 2024 chempedia.info