Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject vinyl

When we subjected vinyl iodide 141 to standard Heck/StiUe conditions, we were gratified by success in our first attempt, wherein the desired 6-exo cyclization did indeed take place and the resulting palladium intermediate 142... [Pg.358]

Vinal fibers, or poly(vinyl alcohol) fibers, are not made in the United States, but the fiber is produced commercially in Japan, Korea, and China where the generic name vinylon is used. These materials are the subject of this article (see also Vinyl polymers, vinyl alcohol polymers). [Pg.337]

Raw Material. PVA is synthesized from acetjiene [74-86-2] or ethylene [74-85-1] by reaction with acetic acid (and oxygen in the case of ethylene), in the presence of a catalyst such as zinc acetate, to form vinyl acetate [108-05-4] which is then polymerized in methanol. The polymer obtained is subjected to methanolysis with sodium hydroxide, whereby PVA precipitates from the methanol solution. [Pg.337]

Methyl vinyl ketone is used as a comonomer in photodegradable plastics, and is an intermediate in the synthesis of steroids and vitamin A. It is highly toxic and faciUties handling over a threshold of 100 lbs (45.5 kg) are subject to special OSHA documentation regulations (273). [Pg.496]

Photochemistry. Vinyl chloride is subject to photodissociation. Photexcitation at 193 nm results in the elimination of HCl molecules and Cl atoms in an approximately 1.1 1 ratio (69). Both vinyUdene ( B2) [2143-69-3] and acetylene have been observed as photolysis products (70), as have H2 molecules (71) and H atoms [12385-13-6] (72). HCl and vinyUdene appear to be formed via a concerted 1,1 elimination from excited vinyl chloride (70). An adiabatic recoil mechanism seems likely for Cl atom elimination (73). As expected from the relative stabiUties of the 1- and 2-chlorovinyl radicals [50663-45-1 and 57095-76-8], H atoms are preferentially produced by detachment from the P carbon (72). Finally, a migration mechanism appears to play a significant role in H2 elimination (71). [Pg.415]

Drying of the poly(vinyl alcohol) is critical to both the color and solubiHty of the final product. Excessive drying temperatures result in high product color and an increase in the crystallinity, which in turn reduces the solubiHty of the product. Drying is initially subjected to a flash regime, where the solvent not contained within the particles is flashed off. This first phase is foUowed by a period where the rate is controUed by the diffusion rate of solvent from the poly(vinyl alcohol) particles. Because the diffusion rate falls as the material dries, complete drying is not practical. The polymer is therefore generally sold at a specification of 95% soHds. [Pg.485]

The gases from the reactor are then cooled and subjected to a caustic wash to remove unreacted hydrogen chloride. This is then followed by a methanol wash to remove water introduced during the caustic wash. A final purification to remove aldehydes and ethylidene dichloride, formed during side reactions, is then carried out by low-temperature fractionation. The resulting pure vinyl chloride is then stored under nitrogen in a stainless steel tank. [Pg.314]

The polymers were first described by Newkirk. Polymerisation may be brought about by subjecting acetylene-free vinyl fluoride to pressures to up to 1000 atm at 80°C in the presence of water and a trace of benzoyl peroxide. [Pg.376]

The nuclear substituted methyl styrenes have been the subject of much study and of these poly(vinyl toluene) (i.e. polymers of m- and /7-methylstyrenes) has found use in surface coatings. The Vicat softening point of some nuclear substituted methyl styrenes in given in Table 16.8. [Pg.452]

In addition to the various vinyl polymers diseussed in the preceding seven chapters a large number of other polymers of this type have been described in the literature. Some of these have achieved commercial significance and those which have interest as plastics or closely related materials are the subject of this chapter. [Pg.466]

In the UK vinyl chloride is also subject to an overriding annual maximum exposure limit of 3 ppm. [Pg.176]

The toughness of interfaces between immiscible amorphous polymers without any coupling agent has been the subject of a number of recent studies [15-18]. The width of a polymer/polymer interface is known to be controlled by the Flory-Huggins interaction parameter x between the two polymers. The value of x between a random copolymer and a homopolymer can be adjusted by changing the copolymer composition, so the main experimental protocol has been to measure the interface toughness between a copolymer and a homopolymer as a function of copolymer composition. In addition, the interface width has been measured by neutron reflection. Four different experimental systems have been used, all containing styrene. Schnell et al. studied PS joined to random copolymers of styrene with bromostyrene and styrene with paramethyl styrene [17,18]. Benkoski et al. joined polystyrene to a random copolymer of styrene with vinyl pyridine (PS/PS-r-PVP) [16], whilst Brown joined PMMA to a random copolymer of styrene with methacrylate (PMMA/PS-r-PMMA) [15]. The results of the latter study are shown in Fig. 9. [Pg.233]

A process for the preparation of porous polyvinyl alcohol gels in three steps is (1) suspension polymerization of vinyl acetate with diethylene glycol dimethacrylate in the presence of a diluent as porogen, (2) saponifying of the resulting porous polyvinyl acetate gel with an alkali, and then (3) subjecting... [Pg.9]

While generation of a Mn(V)oxo salen intermediate 8 as the active chiral oxidant is widely accepted, how the subsequent C-C bond forming events occur is the subject of some debate. The observation of frans-epoxide products from cw-olefins, as well as the observation that conjugated olefins work best support a stepwise intermediate in which a conjugated radical or cation intermediate is generated. The radical intermediate 9 is most favored based on better Hammett correlations obtained with o vs. o . " In addition, it was recently demonstrated that ring opening of vinyl cyclopropane substrates produced products that can only be derived from radical intermediates and not cationic intermediates. ... [Pg.32]

When these polymers are subjected to light of A = 365 nm in bulk vinyl monomer, (MMA or styrene) grafted or extensive crosslinking polymers were produced. The photografting or photocrosslinking occurs through the macro-radicals photochemically generated on the backbone of the polymer ... [Pg.256]

Cardanol grafted cellulose. One of the advanced techniques to improve the properties of a polymer is to graft another polymer onto it. Grafting of vinyl monomers onto cellulose has been the subject of extensive studies during the last decade or two. Grafted cellulose copolymers have been found to have improved proper-... [Pg.431]

Dynel, a modacrylic fiber, is produced by copolymerizing vinyl chloride with acrylonitrile. Solution spinning is also used where the polymer is dissolved in a solvent such as acetone. After the solvent is evaporated, the fibers are washed and subjected to stretching, which extends the fiber 4-10 times of the original length. [Pg.369]

Alkylation reactions are subject to the same constraints that affect all Sn2 reactions (Section 11.3). Thus, the leaving group X in the alkylating agent R—X can be chloride, bromide, iodide, or tosylate. The alkyl group R should be primary or methyl, and preferably should be allylic or benzylic. Secondary halides react poorly, and tertiary halides don t react at all because a competing E2 elimination of HX occurs instead. Vinylic and aryl halides are also unreactive because backside approach is sterically prevented. [Pg.855]

The cyclization of the homologous epoxide 36 under acidic conditions was also investigated (Table 9.5) [110]. As would be expected, compound 36a reacted by a 6-exo cyclization to give tetrahydropyran 38a (Entry 1). The a, 3-unsaturated hydroxy epoxide 36b gave a 1 3.5 mixture of oxepane 37b and tetrahydropyran 38b (Entry 2). Subjection of 36c and 36d, which both contain more electron-rich 71-systems, to the reaction conditions resulted in preferential 7-endo cyclization to give 37c and 37d, thus confirming the powerful regiodirecting effect of the vinyl moiety (Entries 3 and 4). [Pg.333]


See other pages where Subject vinyl is mentioned: [Pg.76]    [Pg.76]    [Pg.235]    [Pg.426]    [Pg.472]    [Pg.525]    [Pg.535]    [Pg.67]    [Pg.464]    [Pg.518]    [Pg.98]    [Pg.299]    [Pg.141]    [Pg.416]    [Pg.139]    [Pg.275]    [Pg.317]    [Pg.394]    [Pg.722]    [Pg.414]    [Pg.45]    [Pg.325]    [Pg.256]    [Pg.495]    [Pg.501]    [Pg.8]    [Pg.129]    [Pg.216]    [Pg.607]    [Pg.624]    [Pg.11]    [Pg.111]    [Pg.77]   
See also in sourсe #XX -- [ Pg.51 , Pg.387 ]




SEARCH



Cumulative Subject vinylic acylations

Subject vinyl amides

Subject vinyl functions

Subject vinyl monomers

Subject vinyl substitutions

Subject vinylic

Vinyl acetate Subject

Vinyl ethers Subject

Vinyl sulfide Subject

Vinyl-metal compounds Subject

© 2024 chempedia.info