Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject schematic

Micellar structure has been a subject of much discussion [104]. Early proposals for spherical [159] and lamellar [160] micelles may both have merit. A schematic of a spherical micelle and a unilamellar vesicle is shown in Fig. Xni-11. In addition to the most common spherical micelles, scattering and microscopy experiments have shown the existence of rodlike [161, 162], disklike [163], threadlike [132] and even quadmple-helix [164] structures. Lattice models (see Fig. XIII-12) by Leermakers and Scheutjens have confirmed and characterized the properties of spherical and membrane like micelles [165]. Similar analyses exist for micelles formed by diblock copolymers in a selective solvent [166]. Other shapes proposed include ellipsoidal [167] and a sphere-to-cylinder transition [168]. Fluorescence depolarization and NMR studies both point to a rather fluid micellar core consistent with the disorder implied by Fig. Xm-12. [Pg.481]

The resistance to plastic flow can be schematically illustrated by dashpots with characteristic viscosities. The resistance to deformations within the elastic regions can be characterized by elastic springs and spring force constants. In real fibers, in contrast to ideal fibers, the mechanical behavior is best characterized by simultaneous elastic and plastic deformations. Materials that undergo simultaneous elastic and plastic effects are said to be viscoelastic. Several models describing viscoelasticity in terms of springs and dashpots in various series and parallel combinations have been proposed. The concepts of elasticity, plasticity, and viscoelasticity have been the subjects of several excellent reviews (21,22). [Pg.271]

For a shock wave in a solid, the analogous picture is shown schematically in Fig. 2.6(a). Consider a compression wave on which there are two small compressional disturbances, one ahead of the other. The first wavelet moves with respect to its surroundings at the local sound speed of Aj, which depends on the pressure at that point. Since the medium through which it is propagating is moving with respect to stationary coordinates at a particle velocity Uj, the actual speed of the disturbance in the laboratory reference frame is Aj - -Ui- Similarly, the second disturbance advances at fl2 + 2- Thus the second wavelet overtakes the first, since both sound speed and particle velocity increase with pressure. Just as a shallow water wave steepens, so does the shock. Unlike the surf, a shock wave is not subject to gravitational instabilities, so there is no way for it to overturn. [Pg.18]

The impurities on the surface are contained in the resulting water droplet or moisture film, and are collected in situ for further investigation by scanning the surface with an auxiliary water droplet (e.g., 50 pi). The VPD residue is allowed to dry in the center of the wafer and subjected to TXRF analysis. A schematic of a VPD reactor is shown in F ure 3. [Pg.353]

In a typical process adiponitrile is formed by the interaction of adipic acid and gaseous ammonia in the presence of a boron phosphate catalyst at 305-350°C. The adiponitrile is purified and then subjected to continuous hydrogenation at 130°C and 4000 Ibf/in (28 MPa) pressure in the presence of excess ammonia and a cobalt catalyst. By-products such as hexamethyleneimine are formed but the quantity produced is minimized by the use of excess ammonia. Pure hexamethylenediamine (boiling point 90-92°C at 14mmHg pressure, melting point 39°C) is obtained by distillation, Hexamethylenediamine is also prepared commercially from butadience. The butadiene feedstock is of relatively low cost but it does use substantial quantities of hydrogen cyanide. The process developed by Du Pont may be given schematically as ... [Pg.481]

The papers which introduced the concept of a dislocation all appeared in 1934 (Polanyi 1934, Taylor 1934, Orowan 1934). Figure 3.20 shows Orowan s original sketch of an edge dislocation and Taylor s schematic picture of a dislocation moving. It was known to all three of the co-inventors that plastic deformation took place by slip on lattice planes subjected to a higher shear stress than any of the other symmetrically equivalent planes (see Chapter 4, Section 4.2.1). Taylor and his collaborator Quinney had also undertaken some quite remarkably precise calorimetric research to determine how much of the work done to deform a piece of metal... [Pg.110]

Fig. 10.12 Schematic representation of a pipewall subject to cathodic protection (see text), t , = overpotential at x 7) = overpotential at x = 0 7)p,oi = overpotential at x = a/2 1, - current line at x = current density entering line at x / = current in line at x = 0 from one side of drain point (2/ = total current drain) a = distance between the drain points... Fig. 10.12 Schematic representation of a pipewall subject to cathodic protection (see text), t , = overpotential at x 7) = overpotential at x = 0 7)p,oi = overpotential at x = a/2 1, - current line at x = current density entering line at x / = current in line at x = 0 from one side of drain point (2/ = total current drain) a = distance between the drain points...
The block diagram in Fig. 2-21 is subjected to a set of equal and opposite shearing forces (Q). The top view (a) represents a material with equal and opposite shearing forces and (b) is a schematic of infinitesimally thin layers subject to shear stress. If the material is imagined as an infinite number of infinitesimally thin layers, as shown at the bottom, then there is a tendency for one layer of the material to slide over another to produce a shear form of deformation or failure if the force is great enough. The shear stress will always be tangential to the area upon which it acts. The... [Pg.61]

During the thickness measurement, the steel strip is hot (1500° to 1750°F), moving (about 2000 feet per minute horizontally with possible vertical vibrations up to. several inches in amplitude), and subjected to a spray of cooling water. The measurement is accomplished through a servo system, shown schematically in Figure 3-1. [Pg.69]

Figure 16. Schematic of the geometry of a section of liver before (top) and after (bottom) being subjected to slow freezing. During slow freezing, ice forms in the sinusoids and water flows osmotically from the cells into the sinusoids. (The upper drawing is slightly modified from Rubinsky and Pegg, 1988.)... Figure 16. Schematic of the geometry of a section of liver before (top) and after (bottom) being subjected to slow freezing. During slow freezing, ice forms in the sinusoids and water flows osmotically from the cells into the sinusoids. (The upper drawing is slightly modified from Rubinsky and Pegg, 1988.)...
Fig. 23. A schematic representation of the photoselectivity experiments involving (Cr -.Mo Kr = mixtures deposited at 10-12 K and then sequentially subjected... Fig. 23. A schematic representation of the photoselectivity experiments involving (Cr -.Mo Kr = mixtures deposited at 10-12 K and then sequentially subjected...
Fig. 46.—Schematic Effect of Concentration of Persistence Time (Tp), Subjective Intensity (Si), and Onset Time (Tp) of Sucrose Sweeteners. ... Fig. 46.—Schematic Effect of Concentration of Persistence Time (Tp), Subjective Intensity (Si), and Onset Time (Tp) of Sucrose Sweeteners. ...
The lead storage battery provides electrical power in automobiles. It is well suited for this use because it supplies the large current needed to drive starter motors and headlights and can be recharged easily. Figure 19-20 shows the lead storage cell in a schematic view. The half-reactions are the subject of Example ... [Pg.1402]

Gaussian pulses are frequently applied as soft pulses in modern ID, 2D, and 3D NMR experiments. The power in such pulses is adjusted in milliwatts. Hard" pulses, on the other hand, are short-duration pulses (duration in microseconds), with their power adjusted in the 1-100 W range. Figures 1.15 and 1.16 illustrate schematically the excitation profiles of hard and soft pulses, respectively. Readers wishing to know more about the use of shaped pulses for frequency-selective excitation in modern NMR experiments are referred to an excellent review on the subject (Kessler et ai, 1991). [Pg.24]

Figure 3.4 Schematic representation of the steps involved in obtaining a two-dimensional NMR spectrum. (A) Many FIDs are recorded with incremented values of the evolution time and stored. (B) Each of the FIDs is subjected to Fourier transformation to give a corresponding number of spectra. The data are transposed in such a manner that the spectra are arranged behind one another so that each peak is seen to undergo a sinusoidal modulation with A second series of Fourier transformations is carried out across these columns of peaks to produce the two-dimensional plot shown in (C). Figure 3.4 Schematic representation of the steps involved in obtaining a two-dimensional NMR spectrum. (A) Many FIDs are recorded with incremented values of the evolution time and stored. (B) Each of the FIDs is subjected to Fourier transformation to give a corresponding number of spectra. The data are transposed in such a manner that the spectra are arranged behind one another so that each peak is seen to undergo a sinusoidal modulation with A second series of Fourier transformations is carried out across these columns of peaks to produce the two-dimensional plot shown in (C).
Figure 19.8 A schematic representation of the GABAa receptor shift hypothesis. This proposes that patients with panic disorder have dysfunctional GABAa receptors such that the actions of drugs that behave as antagonists in normal subjects are expressed as inverse agonism in panic patients. It is unlikely that this theory extends to generalised anxiety disorder (GAD), for which benzodiazepine agonists are highly effective treatments, but it could explain why these drugs are relatively ineffective at treating panic disorder. (Based on Nutt et al. 1990)... Figure 19.8 A schematic representation of the GABAa receptor shift hypothesis. This proposes that patients with panic disorder have dysfunctional GABAa receptors such that the actions of drugs that behave as antagonists in normal subjects are expressed as inverse agonism in panic patients. It is unlikely that this theory extends to generalised anxiety disorder (GAD), for which benzodiazepine agonists are highly effective treatments, but it could explain why these drugs are relatively ineffective at treating panic disorder. (Based on Nutt et al. 1990)...
Considering again the case of a structureless continuum, we have that 8j3 arises from excitation of a superposition of continuum states, hence from coupling within PHmP [69]. The simplest model of this class of problems, depicted schematically in Fig. 5b, is that of dissociation of a diatomic molecule subject to two coupled electronic dissociative potential energy curves. Here the channel phase can be expressed as... [Pg.167]

The algorithms used by module section GQUAL are, again, based on those incorporated in the SERATRA model. The chemical forms which it can handle and the processes included are shown schematically in Figure 8. In this section of the module it is assumed that all chemicals exist in solution and are, thus, potentially subject to the processes shown on the left side of the figure. These include ... [Pg.138]

Figure 8.1 Body iron stores and daily iron exchange. The figure shows a schematic representation of the routes of iron movement in normal adult male subjects. The plasma iron pool is about 4 mg (transferrin-bound iron and non-transferrin-bound iron), although the daily turnover is over 30 mg. The iron in parenchymal tissues is largely haem (in muscle) and ferritin/haemosiderin (in hepatic parenchymal cells). Dotted arrows represent iron loss through loss of epithelial cells in the gut or through blood loss. Numbers are in mg/day. Transferrin-Tf haemosiderin - hs MPS - mononuclear phagocytic system, including macrophages in spleen and Kupffer cells in liver. Figure 8.1 Body iron stores and daily iron exchange. The figure shows a schematic representation of the routes of iron movement in normal adult male subjects. The plasma iron pool is about 4 mg (transferrin-bound iron and non-transferrin-bound iron), although the daily turnover is over 30 mg. The iron in parenchymal tissues is largely haem (in muscle) and ferritin/haemosiderin (in hepatic parenchymal cells). Dotted arrows represent iron loss through loss of epithelial cells in the gut or through blood loss. Numbers are in mg/day. Transferrin-Tf haemosiderin - hs MPS - mononuclear phagocytic system, including macrophages in spleen and Kupffer cells in liver.

See other pages where Subject schematic is mentioned: [Pg.791]    [Pg.558]    [Pg.1916]    [Pg.243]    [Pg.544]    [Pg.331]    [Pg.244]    [Pg.505]    [Pg.1472]    [Pg.86]    [Pg.284]    [Pg.211]    [Pg.441]    [Pg.669]    [Pg.842]    [Pg.40]    [Pg.146]    [Pg.183]    [Pg.153]    [Pg.177]    [Pg.424]    [Pg.178]    [Pg.165]    [Pg.504]    [Pg.181]    [Pg.34]    [Pg.250]    [Pg.75]    [Pg.63]    [Pg.107]    [Pg.215]    [Pg.136]   
See also in sourсe #XX -- [ Pg.820 ]




SEARCH



Subject schematic representations

© 2024 chempedia.info