Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject polymerizability

The raw material has to be washed to remove impurities. Diluted sodium hydroxide allows the removal of phenols and benzonitrile, and diluted sulphuric acid reacts with pyridine bases. The resulting material is distilled to concentrate the unsaturated compounds (raw feedstock for coumarone-indene resin production), and separate and recover interesting non-polymerizable compounds (naphthalene, benzene, toluene, xylenes). Once the unsaturated compounds are distilled, they are treated with small amounts of sulphuric acid to improve their colour activated carbons or clays can be also used. The resulting material is subjected to polymerization. It is important to avoid long storage time of the feedstock because oxidation processes can easily occur, affecting the polymerization reaction and the colour of the coumarone-indene resins. [Pg.604]

Ceresa (80) demonstrated the possibility of synthetizing block copolymer by subjecting a starch emulsion with free radical polymerizable monomers to repeated freezing at — 200° C and subsequent thawing to room temperature. He used acrylonitrile owing to the case of separating the insoluble block copolymer fraction, see Table 22. [Pg.64]

The lithiated polyethylene copolymer was then suspended in hexane or THF solvent. The graft-from reactions were carried out in slurry solution by reacting the lithiated polyethylene copolymer with anionic polymerizable monomers, such as styrene and p-methylstyrene. After certain reaction time, 10 ml of isopropanol was added to terminate the graft-from reaction. The precipitated polymer was filtered and then subjected to fractionation. Good solvents for backbone and side chain polymers were used during the fractionization, using a Soxhlet apparatus under N2 for 24 hours. The soluble fractions were isolated by vacuum-removal of solvent. Usually, the total soluble fractions were less than 5 % of the product. The major insoluble fraction was PE graft copolymer, which was completely soluble in xylene or trichlorobenzene at elevated temperatures. [Pg.73]

What reasons are there for mixing polymerizable lipids with natural ones Polymerized membrane systems, especially those based on diacetylenic lipids, have proven to be excessively rigid and to show no phase transition. Addition of natural lipids could help to retain a certain membrane mobility even in the polymerized state, with almost unaffected stability. Furthermore, natural lipids can provide a suitable environment for the incorporation of membrane proteins into polymerizable membranes (see 4.2.3). Besides this, enzymatic hydrolysis of the natural membrane component can be used for selectively opening up a vesicle in order to release entrapped substances in a defined manner (see 4.2.2). Therefore, it is interesting to learn about the miscibility of polymerizable and natural lipids and also about the polymerization behavior of these mixtures. Investigations on this subject have thus far focused on mixtures of natural lipids with polymerizable lipids carrying diacetylene moieties. [Pg.30]

While there have been efforts to polymerize other surfactant mesophases and metastable phases, bicontinuous cubic phases have only very recently been the subject of polymerization work. Through the use of polymerizable surfactants, and aqueous monomers, in particular acrylamide, polymerization reactions have been performed in vesicles (4-8). surfactant foams ), inverted micellar solutions (10). hexagonal phase liquid crystals (111, and bicontinuous microemulsions (121. In the latter two cases rearrangement of the microstructure occured during polymerization, which in the case of bicontinuous microemulsions seems inevitable b ause microemulsions are of low viscosity and continually rearranging on the timescale of microseconds due to thermal disruption (131. In contrast, bicontinuous cubic phases are extremely viscous in genei, and although the components display self-diffusion rates comparable to those... [Pg.204]

All cationically polymerizable monomers can be potentially used in this process however, the main study has been focused so far on the most reactive oxirane and vinyl ethers [4], Alkoxysilane derivatives - the most common acid-sensitive monomers for the synthesis of siloxane materials through the use of sol-gel methods - were not used extensively. Only a few examples of their application in photo-activated cross-linking can be noted, mainly in co-reaction with oxirane sites [5]. Typically, alkoxysilanes are subjected to an acid- or base-catalyzed process involving hydrolysis of an =SiOR group and then condensation of the formed silanol with another molecule bearing an =SiOH or =SiOR function to give a siloxane linkage [6]. It was of interest to combine the properties of cross-linked silicone materials with the ones provided by sterically overloaded... [Pg.729]

Monomers Not Polymerizable by Plasma Initiation. When styrene and a-methy1styrene were subjected to plasma treatment, the monomers became yellowish and only trace amounts of insoluble films were formed. The discoloration was intensified and extensive formation of dark films were observed if carbon tetrachloride was added as the solvent. No post-polymerization was detectable for these monomers. Generally styrene and a-methylstyrene readily undergo thermal polymerization. However, no thermal polymerization was possible for these monomers after having been subjected to plasma treatment for one minute or less. It has been demonstrated from the emission spectra of glow discharge plasma of benzene (6) and its derivatives (7 ) that most of the reaction intermediates are phenyl or benzyl radicals which subsequently form a variety of compounds such as acetylene, methylacetylene, allene, fulvene, biphenyl, poly(p-phenylenes) and so forth. It is possible that styrene and a-methylstyrene also behave similarly, so that species from the monomer plasma are poor initiators for polymerization. [Pg.256]

Polymerization offers an approach to making vesicle formulations suitable for appUcations. The maj or benefits of polymerization include increasing the chemical-mechanical strength of the vesicle architecture, and the potential for performing subsequently a variety of reactions to create a highly functionalized surface. The most common approach to polymerization in vesicles is to use polymerizable surfactants (Fig. 2a). The use of polymerizable surfactants is best described as the polymerization of vesicles or fixation of vesicles, and so is a synergistic template synthesis. Typically, unsaturated biological surfactants have been specificaUy synthesized for these types of polymerizations, and there are a number of excellent reviews of this subject [3-6]. [Pg.199]

Molecular self-assembly has been recognized as a powerful approach to designer soft materials with a nanoscopic structural precision [llj. However, self-assembled nanostructures are inherently subject to disruption with heating and exposure to solvents. The HBC nanotubes are not exceptional. Thus, for practical applications of the nanotubes, one has to consider postmodification of their nanostructures for covalent connection of the assembled HBC units. Because the inner and outer surfaces of the nanotubes are covered with TEG chains, incorporation of a polymerizable functionality into the TEG termini allows for the formation of surface polymerized nanotubes with an enhanced morphological stability. [Pg.14]

During the period covered by this article a number of books and review articles have been published. Some of these are fairly general. Others deal with one polymer, for example polyisoprene, or one aspect of the subject such as the effects of tacticity in polymer reactions or pKjlymer modifications with polymerizable monomers. ... [Pg.271]

Cyclization during the polymerization of 1,3-dioxolane can generate cationically-polymerizable oligomers. Of these oligomers, 1,3,6,9-tetraoxacycloundccane has been subjected to kinetic investigations. - ... [Pg.28]

Block copolymer systems have aroused interest with reviews of the synthesis of nylon elastomers, thermoplastic polyether-polyamide elastomers, and thermoplastic cross-linked polyamides of 3,3 -bis(hydroxymelhyl) glutaric add. Block copolymers were also reported from poly(/n-phenylene isophthalamidc) and poly(ethylene oxide) or poly(dimethylsiloxane). The polycondensation of oco -dicarboxylic-poly(amide 11) and x -dihydroxy-polyoxyethylene has also been studied and rate constants and activation energies evaluated for the process. The polycondensation of axo -diacid and e9o> -diester-poly(amide 11) oligomers with cuco -dihydroxy-polyether oligomers has similarly been reported. Lactam Rli -opening Polymerization Routes.—The effects of ring size, substitution and the presence of heteroatoms on the polymerizability of lactams has been the subject of reviews. - In the field of lactam polymerization, two systems have evoked major interest, namely caprolactam and 2-pyrrolidone. Studies on caprolactam have reported the effect of water on the mechanism of polymerization and polymerization rate, where it was found that the process was... [Pg.93]

Butadiyne, H-CSC-C C-H, as a polymerizable monomer, has received very little attention from polymer chemists although its discovery dates back to Bayer in 1885. This structurally simple, highly reactive bifunctional molecule would be expected to have been a monomer of considerable interest in the field of polymer chemistry. Possibly, limited butadiyne stability may account for the small amount of polymerization research. The The compound is a liquified gas at room temperature (BP = 10 C), discolors slowly in sealed vessels at 20 C and may explode if heated. Storage and instability problems may be circumvented. Prevention of explosion may e accomplished by addition of an inert diluent such as butane. The monomer may also be stored in t e form of a labile complex with N-methyl-pyrrolidone. Its thermal condensation or polymerization was briefly recorded as an observation by Bayer and described in a little more detail by Miiller in 1925. Prevention of this thermal polymerization has been the subject of several patents with methylene blue, pyridine and vinylpyridine claimed as inhibitors. [Pg.399]

Ceresa [114] demonstrated the possibility of synthesizing block copolymer by subjecting a starch emulsion with free radical polymerizable monomers to repeated freezing at — 200°C and subsequent thawing to room temperature. He used acrylonitrile, owing to the ease of separating the insoluble block copolymer fraction (see Table 5.22). Simionescu and co-workers applied the same technique to cellulose and acrylonitrile solutions [167], and Fujii and co-workers to solutions of starch and to the vinyl polymers, for example, polystyrene, poly(methyl methacrylate), poly(vinyl acetate), and poly(acrylic acid) [144]. [Pg.237]

The second alternative for polymerizable surfactants is polymeric surfactants. The subject has been recently reviewed by Lachewsky [8]. Even more recently the same authors [135] compared polymerizable surfactant and their homopolymers (polysoaps) and showed that good results can be obtained from them. The same conclusion has been shown valid for the homopolymer of one of the first commercially available allylic surfmers [136]. Recently, core-shell particles have been prepared using an inisurfmer, containing both a polymerizable moiety and a peroxydic group. This compound has been used to cover a seed polymer particle and initiate, from the peroxide group, the polymerization of a shell of another polymer [137]. [Pg.536]

Subjection of the dispersion to dialysis, whereby the water-soluble inorganic salts and relatively low-molecular emulsifiers are difhised through cellophane membranes so that the protective colloid and the polymerizate can now be easily separated quantitatively by centrifuging. (Table 6.1.2d)... [Pg.132]

Diacetylenes in phospholipid bilayers have been the subject of extensive studies in our laboratory, not only because of the highly conjugated polymers they form, but also because of their ability to transform bilayers into interesting microstructures. Consequent to our synthesis and characterization of several isomeric diacetylenic phospholipids, we have found that the polymerization in diacetylenic bilayers is not complete. In order to achieve participation of all diacetylenic lipid monomer in the polymerization process, diacetylenic phospholipid was mixed with a spacer lipid, which contained similar number of methylenes as were between the ester linkage and the diacetylene of the polymerizable lipid. Depending upon the composition of the mixtures different morphologies, ranging from tubules to liposomes, have been observed. Polymerization efficiency has been found to be dependent on the composition of the two lipids and in all cases the polymerization was more rapid and efficient than the pure diacetylenic system. We present the results on the polymerization properties of the diacetylenic phosphatidylcholines in the presence of a spacer lipid which is an acetylene-terminated phosphatidylcholine. [Pg.239]


See other pages where Subject polymerizability is mentioned: [Pg.189]    [Pg.21]    [Pg.676]    [Pg.449]    [Pg.30]    [Pg.32]    [Pg.248]    [Pg.102]    [Pg.189]    [Pg.88]    [Pg.73]    [Pg.189]    [Pg.220]    [Pg.360]    [Pg.47]    [Pg.232]    [Pg.248]    [Pg.257]    [Pg.278]    [Pg.92]    [Pg.344]    [Pg.825]    [Pg.92]    [Pg.194]    [Pg.905]    [Pg.6]    [Pg.386]    [Pg.594]    [Pg.94]    [Pg.239]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Polymerizability

Polymerizable

© 2024 chempedia.info