Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject mechanisms

The SPATE technique is based on measurement of the thermoelastic effect. Within the elastic range, a body subjected to tensile or compressive stresses experiences a reversible conversion between mechanical and thermal energy. Provided adiabatic conditions are maintained, the relationship between the reversible temperature change and the corresponding change in the sum of the principal stresses is linear and indipendent of the load frequency. [Pg.409]

Most recovery boilers use 63,5 mm OD carbon steel tubes in the generating bank. With a few exceptions these tubes are swaged at the ends to 50,8 mm. When the 63,5 mm raw tube is manufactured it is subject to a lot of specifications i.e. ASME. There are no specifications for the swaged end of the tube. This is unfortunate as the swaged part of the tube is subjected to further mechanical deformation dtuing the rolling procedure and is located in a wastage zone of tire recovery boiler. [Pg.1034]

We attempt to delineate between surface physical chemistry and surface chemical physics and solid-state physics of surfaces. We exclude these last two subjects, which are largely wave mechanical in nature and can be highly mathematical they properly form a discipline of their own. [Pg.2]

Dislocation theory as a portion of the subject of solid-state physics is somewhat beyond the scope of this book, but it is desirable to examine the subject briefly in terms of its implications in surface chemistry. Perhaps the most elementary type of defect is that of an extra or interstitial atom—Frenkel defect [110]—or a missing atom or vacancy—Schottky defect [111]. Such point defects play an important role in the treatment of diffusion and electrical conductivities in solids and the solubility of a salt in the host lattice of another or different valence type [112]. Point defects have a thermodynamic basis for their existence in terms of the energy and entropy of their formation, the situation is similar to the formation of isolated holes and erratic atoms on a surface. Dislocations, on the other hand, may be viewed as an organized concentration of point defects they are lattice defects and play an important role in the mechanism of the plastic deformation of solids. Lattice defects or dislocations are not thermodynamic in the sense of the point defects their formation is intimately connected with the mechanism of nucleation and crystal growth (see Section IX-4), and they constitute an important source of surface imperfection. [Pg.275]

In addition to lowering the interfacial tension between a soil and water, a surfactant can play an equally important role by partitioning into the oily phase carrying water with it [232]. This reverse solubilization process aids hydrody-namically controlled removal mechanisms. The partitioning of surface-active agents between oil and water has been the subject of fundamental studies by Grieser and co-workers [197, 233]. [Pg.485]

The mechanism of the Fischer-Tropsch reactions has been the object of much study (note Eqs. XVI11-55-XV111-57) and the subject of much controversy. Fischer and Tropsch proposed one whose essential feature was that of a metal carbide—patents have been issued on this basis. It is currently believed that a particular form of active adsorbed carbon atoms is involved, which is then methanated through a series of steps such as... [Pg.731]

The purpose of this chapter is to provide an introduction to tlie basic framework of quantum mechanics, with an emphasis on aspects that are most relevant for the study of atoms and molecules. After siumnarizing the basic principles of the subject that represent required knowledge for all students of physical chemistry, the independent-particle approximation so important in molecular quantum mechanics is introduced. A significant effort is made to describe this approach in detail and to coimnunicate how it is used as a foundation for qualitative understanding and as a basis for more accurate treatments. Following this, the basic teclmiques used in accurate calculations that go beyond the independent-particle picture (variational method and perturbation theory) are described, with some attention given to how they are actually used in practical calculations. [Pg.4]

Like the geometry of Euclid and the mechanics of Newton, quantum mechanics is an axiomatic subject. By making several assertions, or postulates, about the mathematical properties of and physical interpretation associated with solutions to the Scluodinger equation, the subject of quantum mechanics can be applied to understand behaviour in atomic and molecular systems. The fust of these postulates is ... [Pg.5]

The relationship between tire abstract quantum-mechanical operators /4and the corresponding physical quantities A is the subject of the fourth postulate, which states ... [Pg.8]

In classical mechanics, it is certainly possible for a system subject to dissipative forces such as friction to come to rest. For example, a marble rolling in a parabola lined with sandpaper will eventually lose its kinetic energy and come to rest at the bottom. Rather remarkably, making a measurement of E that coincides with... [Pg.20]

This venerable book was written in 1935, shortly after the birth of modern quantum mechanics. Nevertheless, it remains one of the best sources for students seeking to gain an understanding of quantum-mechanical principles that are relevant in chemistry and chemical physics. Equally outstanding jobs are done in dealing with both quantitative and qualitative aspects of the subject. More accessible to most chemists than Landau and Lifschitz. [Pg.52]

A marvellous and rigorous treatment of non-relativistic quantum mechanics. Although best suited for readers with a fair degree of mathematical sophistication and a desire to understand the subject in great depth, the book contains all of the important ideas of the subject and many of the subtle details that are often missing from less advanced treatments. Unusual for a book of its type, highly detailed solutions are given for many illustrative example problems. [Pg.52]

It is customary in statistical mechanics to obtain the average properties of members of an ensemble, an essentially infinite set of systems subject to the same constraints. Of course each of the systems contains the... [Pg.374]

The appropriate quantum mechanical operator fomi of the phase has been the subject of numerous efforts. At present, one can only speak of the best approximate operator, and this also is the subject of debate. A personal historical account by Nieto of various operator definitions for the phase (and of its probability distribution) is in [27] and in companion articles, for example, [130-132] and others, that have appeared in Volume 48 of Physica Scripta T (1993), which is devoted to this subject. (For an introduction to the unitarity requirements placed on a phase operator, one can refer to [133]). In 1927, Dirac proposed a quantum mechanical operator tf), defined in terms of the creation and destruction operators [134], but London [135] showed that this is not Hermitean. (A further source is [136].) Another candidate, e is not unitary. [Pg.103]

In what is called BO MD, the nuclear wavepacket is simulated by a swarm of trajectories. We emphasize here that this does not necessarily mean that the nuclei are being treated classically. The difference is in the chosen initial conditions. A fully classical treatment takes the initial positions and momenta from a classical ensemble. The use of quantum mechanical distributions instead leads to a seraiclassical simulation. The important topic of choosing initial conditions is the subject of Section II.C. [Pg.258]

Successful predictive models in toxicology exist - however, they are of a rather local nature. Effects considered in toxicology can be caused by different mechanisms. Efforts to get away from a class perspective to one that is more consistent regarding modes of toxic action are still a subject of ongoing research. [Pg.512]


See other pages where Subject mechanisms is mentioned: [Pg.259]    [Pg.679]    [Pg.791]    [Pg.244]    [Pg.484]    [Pg.638]    [Pg.4]    [Pg.8]    [Pg.12]    [Pg.16]    [Pg.21]    [Pg.36]    [Pg.604]    [Pg.664]    [Pg.713]    [Pg.2490]    [Pg.2853]    [Pg.2990]    [Pg.3032]    [Pg.96]    [Pg.100]    [Pg.102]    [Pg.108]    [Pg.221]    [Pg.381]    [Pg.478]    [Pg.41]    [Pg.135]    [Pg.197]    [Pg.61]    [Pg.110]    [Pg.11]    [Pg.46]    [Pg.178]    [Pg.208]   
See also in sourсe #XX -- [ Pg.449 ]

See also in sourсe #XX -- [ Pg.691 ]

See also in sourсe #XX -- [ Pg.564 ]

See also in sourсe #XX -- [ Pg.564 ]

See also in sourсe #XX -- [ Pg.149 , Pg.150 , Pg.151 , Pg.152 , Pg.153 , Pg.154 ]

See also in sourсe #XX -- [ Pg.564 ]




SEARCH



Cumulative Subject mechanism

Envelope flip mechanism Subject inde

Interlocking, mechanical Subject

Mechanical Property Subject

Mechanical conditioning Subject

Molecular mechanics 196 Subject

Quantum mechanical bonding 402 Subject

Stepwise mechanism Subject

Subject Mechanism value

Subject cyclic mechanism

Subject functionalization mechanisms

Subject gelatination mechanism

Subject insensitivity mechanisms

Subject learning mechanisms

Subject mechanical reinforcement

Subject quantum mechanical tunneling

Subject rapid equilibrium mechanisms

Subject reinforcing mechanisms

Subject sizing mechanisms

Subject toxic mechanisms

Subject transport mechanism

Subject using quantum mechanical

Subject volume increase mechanism

Subject-verb agreement Mechanics

© 2024 chempedia.info