Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject agents

In addition to lowering the interfacial tension between a soil and water, a surfactant can play an equally important role by partitioning into the oily phase carrying water with it [232]. This reverse solubilization process aids hydrody-namically controlled removal mechanisms. The partitioning of surface-active agents between oil and water has been the subject of fundamental studies by Grieser and co-workers [197, 233]. [Pg.485]

Reduction of arenes by catalytic hydrogenation was described m Section 114 A dif ferent method using Group I metals as reducing agents which gives 1 4 cyclohexadiene derivatives will be presented m Section 1111 Electrophilic aromatic substitution is the most important reaction type exhibited by benzene and its derivatives and constitutes the entire subject matter of Chapter 12... [Pg.438]

Annual Proceedings of the Safety Seminars, Dept, of Defense, Explosive Safety Board, Washington, D.C. International symposia on explosives and closely related subjects are excellent sources of information, ie, international symposia on detonation symposia on combustion symposia on chemical problems connected with the stabiUty of explosives international pyrotechnics seminars symposia on compatibiUty of plastics and other materials with explosives, propellants, and pyrotechnics, and processing of explosives, propellants, and ingredients and symposia on explosives and pyrotechnics Mineral Industy Surveys, U.S. Bureau of Mines, Pittsburgh, Pa. Periodic pubhcations dedicated primarily to explosive studies in Propellants and Explosives Journal of Ha yardous Materials, and apparent consumption of industrial explosives and blasting agents in the United States. [Pg.30]

If the temperature of the space in which an object is placed were truly constant, a sealed case having a constant absolute humidity would also have a constant relative humidity. Because temperature is subject to some variations and totally leakproof cases are not easy to buHd, a second solution is often sought by placing the objects in reasonably weU-sealed cases in which the relative humidity is kept at a constant value by means of a buffeting agent. [Pg.429]

Patients receiving monoamine oxidase inhibitors (MAOI) as antidepressant therapy have been especially subject to the hypertensive effects of vasoactive amines (52). These dietary amines have also been impHcated as causative agents ia migraine. Other aaturaHy occurring alkaloids (qv) have been recognized for centuries as possessing neurological stimulant and depressant properties. [Pg.478]

Methanol is stable under normal storage conditions. Methanol is not subject to hazardous polymerization reactions, but can react violendy with strong oxidizing agents. The greatest hazard involved in handling methanol is the danger of fire or explosion. The NFPA classifies methanol as a serious fire hazard. [Pg.280]

A Acetylation, O-Phosphorylation, and O-Adenylylation. A/-Acetylation, O-phosphorjiation, and O-adenyljiation provide mechanisms by which therapeutically valuable aminocyclitol antibiotics, eg, kanamycia [8063-07-8] gentamicin [1403-66-3] sisomicin [32385-11-8], streptomycia [57-92-1], neomycin, or spectinomycin are rendered either partially or completely iaactive. Thus, eg, kanamycia B [4696-78-8] (50) can be iaactivated by modification at several sites, as shown. The elucidation of these mechanisms has allowed chemical modification of the sites at which the iaactivation occurs. Several such bioactive analogues, eg, dibekacia and amikacin have been prepared and are not subject to the iaactivation hence, they inhibit those organisms against which the parent antibiotics are iaeffective (96) (see Antibacterial agents, synthetic). [Pg.314]

Ferrous Sulfdte Titration. For deterrnination of nitric acid in mixed acid or for nitrates that are free from interferences, ferrous sulfate titration, the nitrometer method, and Devarda s method give excellent results. The deterrnination of nitric acid and nitrates in mixed acid is based on the oxidation of ferrous sulfate [7720-78-7] by nitric acid and may be subject to interference by other materials that reduce nitric acid or oxidize ferrous sulfate. Small amounts of sodium chloride, potassium bromide, or potassium iodide may be tolerated without serious interference, as can nitrous acid up to 50% of the total amount of nitric acid present. Strong oxidizing agents, eg, chlorates, iodates, and bromates, interfere by oxidizing the standardized ferrous sulfate. [Pg.47]

Mechanical Properties. Properties of typical grades of PBT, either as unfiUed neat resin, glass-fiber fiUed, and FR-grades, are set out in Table 8. This table also includes impact-modified grades which incorporate dispersions of elastomeric particles inside the semicrystalHne polyester matrix. These dispersions act as effective toughening agents which greatly improve impact properties. The mechanisms are not fiiUy understood in all cases. The subject has been discussed in detail (171) and the particular case of impact-modified polyesters such as PBT has also been discussed (172,173). [Pg.300]

Pha.se-Tra.nsfer Ca.ta.lysts, Many quaternaries have been used as phase-transfer catalysts. A phase-transfer catalyst (PTC) increases the rate of reaction between reactants in different solvent phases. Usually, water is one phase and a water-iminiscible organic solvent is the other. An extensive amount has been pubHshed on the subject of phase-transfer catalysts (233). Both the industrial appHcations in commercial manufacturing processes (243) and their synthesis (244) have been reviewed. Common quaternaries employed as phase-transfer agents include benzyltriethylammonium chloride [56-37-17, tetrabutylammonium bromide [1643-19-2] tributylmethylammonium chloride [56375-79-2] and hexadecylpyridinium chloride [123-03-5]. [Pg.383]

Sulfonic acids may be subjected to a variety of transformation conditions, as shown in Figure 2. Sulfonic acids can be used to produce sulfonic anhydrides by treatment with a dehydrating agent, such as thionyl chloride [7719-09-7J. This transformation is also accomphshed using phosphoms pentoxide [1314-56-3J. Sulfonic anhydrides, particulady aromatic sulfonic anhydrides, are often produced in situ during sulfonation with sulfur trioxide. Under dehydrating conditions, sulfonic acids react with substituted aromatic compounds to give sulfone derivatives. [Pg.96]


See other pages where Subject agents is mentioned: [Pg.23]    [Pg.23]    [Pg.3]    [Pg.484]    [Pg.144]    [Pg.221]    [Pg.343]    [Pg.345]    [Pg.438]    [Pg.43]    [Pg.169]    [Pg.203]    [Pg.235]    [Pg.488]    [Pg.491]    [Pg.319]    [Pg.350]    [Pg.27]    [Pg.218]    [Pg.305]    [Pg.417]    [Pg.544]    [Pg.268]    [Pg.325]    [Pg.103]    [Pg.153]    [Pg.29]    [Pg.75]    [Pg.270]    [Pg.380]    [Pg.305]    [Pg.366]    [Pg.429]    [Pg.237]    [Pg.465]    [Pg.493]    [Pg.103]    [Pg.28]    [Pg.60]    [Pg.341]    [Pg.54]   
See also in sourсe #XX -- [ Pg.136 , Pg.138 ]




SEARCH



© 2024 chempedia.info