Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene, derivative

The Pd(II)-mediated reaction of benzene with alkenes affords styrene derivatives 259[230,231]. [Pg.56]

Palladation products formed from arylmercurials, carboalkoxymercurials, and alkylmercurials, which have no /3-hydrogen, are used in situ for the reaction of alkenes[367]. Particularly, the arylation of alkenes is synthetically useful. Styrene derivatives 402 and 403 are formed by the reaction of a... [Pg.79]

Thallation of aromatic compounds with thallium tris(trifluoroacetate) proceeds more easily than mercuration. Transmetallation of organothallium compounds with Pd(II) is used for synthetic purposes. The reaction of alkenes with arylthallium compounds in the presence of Pd(Il) salt gives styrene derivatives (433). The reaction can be made catalytic by use of CuCl7[393,394], The aryla-tion of methyl vinyl ketone was carried out with the arylthallium compound 434[395]. The /9-alkoxythallium compound 435, obtained by oxythallation of styrene, is converted into acetophenone by the treatment with PdCh[396]. [Pg.83]

Chlorides are inert. However, the reaction ofp-chlorobenzophenone (9) with a styrene derivative proceeds satisfactorily at 150 C by u.sing dippb [l,4-bis(-diisopropylphosphino)butane] as a ligand to give the stilbene derivative 10. However, dippp [l,3-bis(diisopropylphosphino)propane] is an ineffective ligand[13]. On the other hand, the coupling of chlorobenzene with styrene proceeds in the presence of Zn under base-free conditions to afford the cis-stilbene 11 as a main product with evolution of H . As the ligand, dippp is... [Pg.128]

The Li compound 588 formed by the ort/io-lithiation of A. A -dimethylaniline reacts with vinyl bromide to give the styrene derivative 589(433]. The 2-phe-nylindole 591 is formed by the coupling of l-methyl-2-indolylmagnesium formed in situ from the indolyllithium 590 and MgBr2, with iodobenzene using dppb[434]. 2-Furyl- and 2-thienyllithium in the presence of MgBr2 react with alkenyl halides[435]. The arylallenes 592 and 1,2,4-alkatrienes are prepared by the coupling reaction of the allenyllithium with aryl or alkenyl halides[436]. [Pg.210]

Polymers of Styrene Derivatives. Many styrene derivatives have been synthesized and the corresponding polymers and copolymers prepared (61). Glass-transition temperatures for a series of substituted styrene polymers are shown in Table 3. The highest T is that of... [Pg.507]

Some polymers from styrene derivatives seem to meet specific market demands and to have the potential to become commercially significant materials. For example, monomeric chlorostyrene is useful in glass-reinforced polyester recipes because it polymerizes several times as fast as styrene (61). Poly(sodium styrenesulfonate) [9003-59-2] a versatile water-soluble polymer, is used in water-poUution control and as a general flocculant (see Water, INDUSTRIAL WATER TREATMENT FLOCCULATING AGENTs) (63,64). Poly(vinylhenzyl ammonium chloride) [70304-37-9] h.a.s been useful as an electroconductive resin (see Electrically conductive polya rs) (65). [Pg.507]

Radical copolymerization is used in the manufacturing of random copolymers of acrylamide with vinyl monomers. Anionic copolymers are obtained by copolymerization of acrylamide with acrylic, methacrylic, maleic, fu-maric, styrenesulfonic, 2-acrylamide-2-methylpro-panesulfonic acids and its salts, etc., as well as by hydrolysis and sulfomethylation of polyacrylamide Cationic copolymers are obtained by copolymerization of acrylamide with jV-dialkylaminoalkyl acrylates and methacrylates, l,2-dimethyl-5-vinylpyridinum sulfate, etc. or by postreactions of polyacrylamide (the Mannich reaction and Hofmann degradation). Nonionic copolymers are obtained by copolymerization of acrylamide with acrylates, methacrylates, styrene derivatives, acrylonitrile, etc. Copolymerization methods are the same as the polymerization of acrylamide. [Pg.69]

The traditional means of assessment of the sensitivity of radical reactions to polar factors and establishing the electrophilicity or nucleophilieity of radicals is by way of a Hammett op correlation. Thus, the reactions of radicals with substituted styrene derivatives have been examined to demonstrate that simple alkyl radicals have nucleophilic character38,39 while haloalkyl radicals40 and oxygcn-ccntcrcd radicals " have electrophilic character (Tabic 1.4). It is anticipated that electron-withdrawing substituents (e.g. Cl, F, C02R, CN) will enhance overall reactivity towards nucleophilic radicals and reduce reactivity towards electrophilic radicals. Electron-donating substituents (alkyl) will have the opposite effect. [Pg.21]

Cyclopolymerization of the bis-methacrylates (10, ll)6" 6j or bis-styrene derivatives (12)64 has been used to produce heterotactic polymers and optically active atactic polymers. Cyclopolymcrization of racemic 13 by ATRP with a catalyst based on a chiral ligand (Scheme 8.12) gave preferential conversion of the (S, )-enantiomer. 66... [Pg.424]

In a related reaction, aryl halides couple with vinyl tin reagents to form styrene derivatives in the presence of a nickel catalyst, for example, ... [Pg.931]

Thermal insertion occurs at room temperature when R is XCH2CHAr-, at 40° C when R is benzyl, allyl, or crotyl (in this case two isomeric peroxides are formed), but not even at 80° C when R is a simple primary alkyl group. The insertion of O2 clearly involves prior dissociation of the Co—C bond to give more reactive species. The a-arylethyl complexes are known to decompose spontaneously into CoH and styrene derivatives (see Section B,l,f). Oxygen will presumably react with the hydride or Co(I) to give the hydroperoxide complex, which then adds to the styrene. The benzyl and allyl complexes appear to undergo homolytic fission to give Co(II) and free radicals (see Section B,l,a) in this case O2 would react first with the radicals. [Pg.431]

The mild iron-based Lewis acid, [(q -CsH5)Fe(CO)2(THF)]BF4 reported by Hossain, catalyzed the aziridination of styrene derivatives with PhlNTs with product... [Pg.130]

PdCOTfj CIPr) generated in situ from [Pd(p,-Cl)(Cl)(IPr)]j and AgOTf was reported to catalyse the copper-free Wacker-type oxidation of styrene derivatives using ferf-butyl hydroperoxide (TBHP) as the oxidant (Table 10.7) [41]. Reaction conditions minimised oxidative cleavage of styrene, which is a common side-reaction in Wacker-type oxidations. However, when franx-stilbene was used as a substrate, a significant amount of oxidative cleavage occurred. [Pg.247]

Palladium-catalyzed hydrosilylation of styrene derivatives usually proceeds with high regioselectivity to produce benzylic silanes, 1-aryl-1-silyle thanes, because of the... [Pg.77]

Hydroboration of styrene derivatives has been extensively studied, and perhaps these are the best substrates to consider in a discussion of the efficiency and selectivity of the catalysts (Table 1-1). A neutral rhodium-phosphine complex... [Pg.302]

As an extension of this methodology, the efficiency of these ligands was also evaluated by these authors for the Cu-catalysed cyclopropanation of styrene derivatives with EDA, providing the corresponding cyclopropanes with similar enantioselectivities of up to 97% ee (Scheme 6.4). ... [Pg.211]

In 2004, ruthenium-catalysed asymmetric cyclopropanations of styrene derivatives with diazoesters were also performed by Masson et al., using chiral 2,6-bis(thiazolines)pyridines. These ligands were prepared from dithioesters and commercially available enantiopure 2-aminoalcohols. When the cyclopropanation of styrene with diazoethylacetate was performed with these ligands in the presence of ruthenium, enantioselectivities of up to 85% ee were obtained (Scheme 6.6). The scope of this methodology was extended to various styrene derivatives and to isopropyl diazomethylphosphonate with good yields and enantioselectivities. The comparative evaluation of enantiocontrol for cyclopropanation of styrene with chiral ruthenium-bis(oxazolines), Ru-Pybox, and chiral ruthenium-bis(thiazolines), Ru-thia-Pybox, have shown many similarities with, in some cases, good enantiomeric excesses. The modification... [Pg.213]

Nickel acetylacetonate, Ni(acac)2, in the presence of a styrene derivative promotes coupling of primary alkyl iodides with organozinc reagents. The added styrene serves to stabilize the active catalytic species, and of the derivatives examined, m-trifluoromethylstyrene was the best.274... [Pg.758]

Meerwein Arylation Reactions. Aryl diazonium ions can also be used to form certain types of carbon-carbon bonds. The copper-catalyzed reaction of diazonium ions with conjugated alkenes results in arylation of the alkene, known as the Meerwein arylation reaction.114 The reaction sequence is initiated by reduction of the diazonium ion by Cu(I). The aryl radical adds to the alkene to give a new (3-aryl radical. The final step is a ligand transfer that takes place in the copper coordination sphere. An alternative course is oxidation-deprotonation, which gives a styrene derivative. [Pg.1035]

FIGURE 6.42 Oxidation of 3-oxa-chromanol 58 in the presence of 1 equivalent of water mechanistic study hy means of selectively deuterated starting material. The initially formed ortho-quinone dimethide 63 rearranges into styrene derivative 64, which then reacts with water to provide acetophenone 61. [Pg.204]


See other pages where Styrene, derivative is mentioned: [Pg.56]    [Pg.135]    [Pg.224]    [Pg.240]    [Pg.40]    [Pg.203]    [Pg.399]    [Pg.604]    [Pg.252]    [Pg.33]    [Pg.99]    [Pg.434]    [Pg.94]    [Pg.103]    [Pg.110]    [Pg.87]    [Pg.124]    [Pg.227]    [Pg.332]    [Pg.221]    [Pg.233]    [Pg.22]    [Pg.29]    [Pg.79]    [Pg.214]    [Pg.99]    [Pg.204]    [Pg.205]    [Pg.205]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Anionic polymerization styrene derivatives

Aromatic alkenes styrene derivatives

Aryl derivatives (s. a. Arenes styrenes

Asymmetric Aziridination of Styrene Derivatives

Block copolymers styrene derivatives

Epoxide hydrolases styrene derivatives

Ethylene derivatives styrenes

Hydrogenation styrene derivatives

Hydrosilylation of Styrene and its Derivatives

Isomerization of Styrene Oxide and Derivatives

Lithiated styrene oxide derivatives

Nucleophilic substitutions styrene derivatives

Photocycloaddition styrene deriv

Propagation constants styrene derivatives

Rhodium styrene derivatives

Styrene and derivatives

Styrene and derivs

Styrene derivatives synthesis

Styrene derivatives, copolymerization

Styrene derivatives, substituted

Styrene derived radical

Styrene polymers derived from

Styrenes ethylene derivs

Termination constants styrene derivatives

Vinyl polymers with styrene units derivatives

© 2024 chempedia.info