Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structures bulk oxides

The literature on the oxidation of nickel-copper alloys is not extensive and emphasis tends to be placed on the copper-rich materials. The nickel-rich alloys oxidise according to a parabolic law and at a rate similar to that for nickel Corronil (Ni-30Cu) exhibited a parabolic rate behaviour below 850°C but a more complex behaviour involving two parabolic stages above 900°C. Electron diffraction examination of the oxide films formed on a range of nickel-copper alloys showed the structures of the films to be the same as for the bulk oxides of the component metals and on all the alloys examined only copper oxide was formed below 500°C and only nickel oxide above 700°C . [Pg.1054]

Bulk structures of oxides are best described by assuming that they are made up of positive metal ions (cations) and negative O ions (anions). Locally the major structural feature is that cations are surrounded by O ions and oxygen by cations, leading to a bulk structure that is largely determined by the stoichiometry. The ions are, in almost all oxides, larger than the metal cation. It does not exist in isolated form but is stabilized by the surrounding positive metal ions. [Pg.174]

A wide variety of solid materials are used in catalytic processes. Generally, the (surface) structure of metal and supported metal catalysts is relatively simple. For that reason, we will first focus on metal catalysts. Supported metal catalysts are produced in many forms. Often, their preparation involves impregnation or ion exchange, followed by calcination and reduction. Depending on the conditions quite different catalyst systems are produced. When crystalline sizes are not very small, typically > 5 nm, the metal crystals behave like bulk crystals with similar crystal faces. However, in catalysis smaller particles are often used. They are referred to as crystallites , aggregates , or clusters . When the dimensions are not known we will refer to them as particles . In principle, the structure of oxidic catalysts is more complex than that of metal catalysts. The surface often contains different types of active sites a combination of acid and basic sites on one catalyst is quite common. [Pg.94]

Before we can apply the extended ab initio atomistic thermodynamics approach to the oxygen-covered surface or the surface/bulk oxide, we have to investigate the structure of the bulk electrode. [Pg.149]

In this section, we will investigate the surface structure of the electrode in the potential range before a surface or bulk oxide starts forming, and will restrict ourselves to the adsorption of atomic oxygen only (not OH ) [Jacob and Scheffler, 2007]. Furthermore, in our simulations, we assume a single-crystal Pt(lll) electrode, which will be compared with the experimental CV curve (Fig. 5.9) for poly crystalline Pt. This simplification is motivated by the fact that our interest here is to describe the general behavior of the system only. [Pg.150]

The influence of Pt modihcations on the electrochemical and electrocatalytic properties of Ru(OOOl) electrodes has been investigated on structurally well-defined bimetallic PtRu surfaces. Two types of brmetalhc surfaces were considered Ru(OOOl) electrodes covered by monolayer Pt islands and monolayer PtRu/Ru(0001) surface alloys with a highly dispersed and almost random distribution of the respective surface atoms, with different Pt surface contents for both types of structures. The morphology of these surfaces differs significantly from that of brmetaUic PtRu surfaces prepared by electrochemical deposition of Pt on Ru(0001), where Pt predominantly exists in small multilayer islands. The electrochemical and electrocatal5d ic measurements, base CVs, and CO bulk oxidation under continuous electrolyte flow, led to the following conclusions ... [Pg.496]

Fig. 7.2). The second structure, however, was found to play an important role in the overall phase diagram. This structure is called a surface oxide since the outermost layers of the material are in an oxide form while the bulk of the material is a pure metal. It can be seen from Fig. 7.5 that at most temperatures, there is a range of pressures spanning several orders of magnitude for which this surface oxide structure is more stable than either the bulk oxide or the clean metal surface. This phase diagram strongly suggests that the working catalyst under industrial conditions is a surface oxide rather than bare Ag. Fig. 7.2). The second structure, however, was found to play an important role in the overall phase diagram. This structure is called a surface oxide since the outermost layers of the material are in an oxide form while the bulk of the material is a pure metal. It can be seen from Fig. 7.5 that at most temperatures, there is a range of pressures spanning several orders of magnitude for which this surface oxide structure is more stable than either the bulk oxide or the clean metal surface. This phase diagram strongly suggests that the working catalyst under industrial conditions is a surface oxide rather than bare Ag.
Under the present oxygen treatment conditions, treated WC did not show any change in bulk structure as seen by XRD when the treatment temperature was below 773 K. At 773 K, bulk oxide was formed and the sample was inactive for -hexane-H2 reactions. Hence, four WC samples were compared fresh WC (WC/fresh) and WC treated in 02 at RT, 473 K, and 673 K (denoted by WC/treatment temperature). Bulk oxidation occurred at much lower temperatures for Mo2C and thus the maximum temperature of the oxygen treatment was 473 K (Mo2C/473). [Pg.213]

Selective oxidation materials fall into two broad categories supported systems and bulk systems. The latter are of more practical relevance although one intermediary system, namely vanadia on titania [92,199-201], is of substantial technical relevance. This system is intermediary as titania may not be considered an inert support but rather as a co-catalysts [202] capable of, for example, delivering lattice oxygen to the surface. The bulk systems [100, 121, 135, 203] all consist of structurally complex oxides such as vanadyl phosphates, molybdates with main group components (BiMo), molybdo-vanadates, molybdo-ferrates and heteropolyacids based on Mo and W (sometimes with a broad variation of chemical composition). The reviews mentioned in Table 1.1 deal with many of these material classes. [Pg.22]

The similarities in catalytic reactivity between Cr3 53-montmorillonite and chromia supported on alumina suggest that the structure of the intercalated chromia particles may resemble the structure of the bulk oxide. In order to obtain structural information for the chromia aggregates in pillared clays, we have initiated structural studies of these materials. Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy is being recognized as an effective tool for determining the local structure of a variety of materials. The basic principles and utility of this technique have been discussed elsewhere (18.). ... [Pg.460]

This chapter focuses on the application of solid-state NMR techniques for the characterization of oxidation catalysts. Initially, a brief introduction to these techniques is provided (Section 5.2), within which methods suitable for the study of both bulk structure (Section 5.2.1) and surface characteristics (Section 5.2.2), are described. Examples of the application of these techniques are then provided in Section 5.3, for bulk oxides, and Section 5.4, for surface properties. Finally, Section 5.5 provides an outlook as to future directions in this area. [Pg.196]


See other pages where Structures bulk oxides is mentioned: [Pg.133]    [Pg.102]    [Pg.178]    [Pg.151]    [Pg.152]    [Pg.153]    [Pg.154]    [Pg.434]    [Pg.467]    [Pg.149]    [Pg.151]    [Pg.261]    [Pg.183]    [Pg.191]    [Pg.46]    [Pg.344]    [Pg.937]    [Pg.571]    [Pg.135]    [Pg.104]    [Pg.199]    [Pg.345]    [Pg.496]    [Pg.8]    [Pg.220]    [Pg.26]    [Pg.398]    [Pg.353]    [Pg.204]    [Pg.267]    [Pg.87]    [Pg.147]    [Pg.98]    [Pg.22]    [Pg.311]    [Pg.312]    [Pg.209]    [Pg.209]    [Pg.211]    [Pg.213]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Bulk electronic structure of simple oxides

Bulk metal oxides structures

Bulk structures

Bulk-oxide

Molybdenum oxides, bulk structure

Oxides, structure

Structure of Bulk Oxides

Vanadium oxides, bulk structure

© 2024 chempedia.info