Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure nanostructured materials

The introduction of new synthetic techniques has led to the discoveries of many new electronic materials with improved properties [20-22]. However, similar progress has not been forthcoming in the area of heterogeneous catalysis, despite the accumulation of considerable information regarding structure-reactivity correlations for such catalysts [14-19]. The synthetic challenge in this area stems from the complex and metastable nature of the most desirable catalytic structures. Thus, in order to minimize phase separation and destruction of the most efficient catalytic centers, low-temperature methods and complicated synthetic procedures are often required [1-4]. Similar challenges are faced in many other aspects of materials research and, in general, more practical synthetic methods are required to achieve controlled, facile assembly of complex nanostructured materials [5-11]. [Pg.71]

As has been shown above, oscillatory electrodeposition is interesting from the point of view of the production of micro- and nanostructured materials. However, in situ observation of the dynamic change of the deposits had been limited to the micrometer scale by use of an optical microscope. Inspections on the nanometer scale were achieved only by ex situ experiments. Thus, information vdth regard to dynamic nanostructural changes of deposits in the course of the oscillatory growth was insufHcient, although it is very important to understand how the macroscopic ordered structures are formed with their molecular- or nano-components in a self-organized manner. [Pg.252]

Stang, P. J. Olenyuk, B. Transition-metal-mediated self assembly of discrete manoscopic species with well-defined structures and shapes. In Handbook of Nanostructured Materials and Nanotechnology, Nalwa, H. S.. Ed. Academic Press San Deigo, 2000, Vol. 5, 167-224. [Pg.740]

Perfection of Structure in Nanostructured Materials. An aim of modern nanotechnology is the fabrication of materials with highly perfect structure on the nanometer scale. The distortion of such nanostructured materials can be studied by SAXS methods. Frequently the material is supplied as a very thin film with predominantly uniaxial correlation among the nanodomains. Under these constraints the nanodomains are frequently arranged in such a way that the normal to the film is a symmetry axis rotation of the film on the sample table does not change the scattering (fiber symmetry). [Pg.200]

In general, annealing has been used to either form or improve the structures of compound films formed by the electrodeposition methods described above. This severely limits applications in systems where more complex structures are involved, structures where interdiffusion is a problem nanostructured materials. [Pg.7]

Recent developments of materials and devices with structures in nanometer length scales have created new opportunities and challenges in the science of thermal transport. Interfaces play a particularly important role in the properties of nanoscale structures and nanostructured materials [97-98], This is why a renewed interest for contact resistance arose in recent years with studies of nanocomposite, semicrystalline and polycrystalline materials where contact resistances has a controlling role to determine the bulk thermal conductivity of the material [99-100],... [Pg.115]

The examples discussed above illustrate the importance of block copolymer chain segment incompatibilities for the phase separation of bulk materials, combined with the ability to perform chemistry within specific nanoscale domains to impose permanence upon those self-assembled nanostructured morphologies. Each is limited, however, to crosslinking of internal domains within the solid-state assemblies in order to create discrete nanoscale objects. To advance the level of control over regioselective crosslinking and offer methodologies that allow for the production of additional unique nanostructured materials, the pre-assembled structures can be produced in solution (Figure 6.4), as isolated islands with reactivity allowed either internally or on the external... [Pg.154]

The next step in the direction of a deeper understanding of nanostructured materials depends on being able to isolate the individual structurally determined cluster units from the crystal lattice and then determine the physical properties of the single clusters in question. This long-term objective has been partially achieved in the gas phase investigation of a structurally determined Gai9R6 cluster [R = C(SiMe3)3] in an FT mass spectrometer (cf. Section 2.3.4.2.5, Ga clusters)... [Pg.144]

Electron crystallography provides unique possibilities of studying nanostructured materials. The aims of this course are to show theoretically that electron crystallography can be used for crystal structure analysis to describe different methods of solving crystal structures by electron crystallography and to demonstrate how these methods are used practically. [Pg.15]

Similar approach has also been taken by Ferain and Legras [133,137,138] and De Pra et al. [139] to produce nanostructured materials based on the template of the membrane with etched pores. Polycarbonate film was also of use as the base membrane of the template, and micro- and nanopores were formed by precise control of the etching procedure. Their most resent report showed the successful formation of ultrasmall pores and electrodeposited materials of which sizes were as much as 20 nm [139]. Another attractive point of these studies is the deposited materials in the etched pores. Electrochemical polymerization of conjugated polymer materials was demonstrated in these studies, and the nanowires based on polypyrrole or polyaniline were formed with a fairly cylindrical shape reflecting the side wall structure of the etched pores. Figure 10 indicates the shape of the polypyrrole microwires with their dimension changes by the limitation of the thickness of the template. [Pg.569]


See other pages where Structure nanostructured materials is mentioned: [Pg.203]    [Pg.360]    [Pg.365]    [Pg.130]    [Pg.241]    [Pg.152]    [Pg.198]    [Pg.251]    [Pg.68]    [Pg.218]    [Pg.132]    [Pg.217]    [Pg.31]    [Pg.314]    [Pg.444]    [Pg.183]    [Pg.671]    [Pg.149]    [Pg.153]    [Pg.517]    [Pg.468]    [Pg.193]    [Pg.240]    [Pg.115]    [Pg.13]    [Pg.171]    [Pg.236]    [Pg.243]    [Pg.250]    [Pg.6]    [Pg.289]    [Pg.106]    [Pg.91]    [Pg.567]    [Pg.570]    [Pg.573]    [Pg.548]    [Pg.548]    [Pg.88]    [Pg.138]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Material structure

Nanostructural materials

Nanostructured materials

Structure nanostructures

© 2024 chempedia.info